
Volume:5 Issue:3, March 2000

The World’s Leading Java Resource

TM

UNLOCKING THE SECRETS OF THE JMF

Feature: Exception Chaining Simplifies Debugging Barry Mosher
Record the root cause of high-level exceptions 8

EJB Home: VisualCafé Enterprise Edition for WebLogic Jason Westra
Making EJB development easy! 38

Case Study: Picking the Right Development Tool Sam Watts
IMS uses JClass components to build front end to testing system 42

CORBA Corner: Comparing Network Semantics Jon Siegel
There’s a wide variety of options for invocation and notification semantics 46

Feature: Python Programming Rick Hightower
Increase your productivity by putting Python in your toolbox 54

Feature: Java Servlets: Design Practices PART 2 A.V.B. Subrahmanyam
An analysis of design practices used by servlet developers 70

Feature: EJBs: Architecture for the New Decade Timo Salo &
An attractive server solution Justin Hill 80

Feature: Unlocking the Secrets of the JMF PART 2 Linden deCarmo
Protocols that address the transportation of multimedia content over IP 84

SYS-CON
PUBLICATIONS

Java COM

From the Editor
Going, Going, GONE!

by Sean Rhody pg. 5

Guest Editorial
Battle in the Making

by David Skok pg. 7

Product Review
ProtoView JFCSuite, v2.1

by Gabor Liptak pg. 50

Book Excerpt
Debugging and

Optimization Techniques
by Alan Williamson pg. 90

Straight Talking
Couldn’t String

Two Words Together
by Alan Williamson pg. 16

Daemon Threads
Beware the Daemons

by Tony LaPaso pg. 32

SYS-CON Radio
Interview with Charles
Stack of Flashline.com

pg. 36

by
Mike
Jasnowski pg. 22

Announcing...
Coming

June 25-28, 2000

September 24-27, 2000

DIRECT IE AND NS
TO INSTALL YOUR

APPLETS AND
CLASSES

PERMANENTLY

DIRECT IE AND NS
TO INSTALL YOUR

APPLETS AND
CLASSES

PERMANENTLY

Invocation

Synchronous

Normal Oneway Callback P

Asynchro

Client

Se
ss

io
n

Be
an

Entity
Bean

Entity
Bean

Entity
Bean

Entity
Bean

EJB Container

Java COM

2 MARCH 2000

KL Group
www.klgroup.com

3MARCH 2000

Java COM

Protoview
www.protoview.com

Java COM

4 MARCH 2000

Hot Dispatch
www.hotdispatch.com

5MARCH 2000

Java COM

SEAN RHODY, EDITOR-IN-CHIEF

I
may be somewhat unusual, but I’ve never bought anything at an online

auction. I’ve seen eBay, and one of my friends sold some of his collection
of valuable magazines (okay, comic books) on eBay, but I’ve never gone
the whole route and come home with the goods. I’ve thought about it a

couple of times. I recently built a computer from parts, and one of the
places I looked for motherboards had an auction, but they didn’t have the

board I wanted and there was no way to post my own offer to buy.
Auctions consist of at least two different processes, if not three. There’s the straightforward

auction, in which a seller posts an offer of something that multiple buyers can bid on. Then
there’s the reverse auction, in which a buyer posts an offer to buy something, and multiple
sellers bid progressively lower prices (at least in theory). And there’s the true exchange, in
which multiple buyers and sellers gather and a product changes hands whenever two or more
participants can agree on a price for particular goods.

Of course, there are multiple variations on auctions. Things like English auctions, Dutch auctions,
silent bids, and so forth. These all have more to do with the behavior of the auction than with the
concept of the auction itself. Rules such as minimum bid intervals, who can see information, who
can participate are all part of the package, but the concept stays the same: buy and sell.

A number of vendors produce software to implement auctions and exchanges, including
companies like Trading Dynamics, Tradex and Tradium. You might have heard about Ariba
buying both Trading Dynamics and Tradex. This industry is hot.

But it’s also off target, at least slightly. I work in Net Markets, and meet with clients daily. I
wish I had stock options for every time I’ve gone into a conversation with a potential new mar-
ket that thinks they want auctions. They don’t. Not really – or at least not only.

This is true for several reasons. Now, most of my conversations have been with business-to-
business (B2B) clients rather than consumer-to-business (C2B) clients. On the consumer side,
the auction model has more validity, because in general you’re selling products with a rela-
tively small price tag in relatively high quantity. But B2B is different. A consumer site like eBay
may have millions of participants, but many business-to-business sites have audiences in the
hundreds because they focus on either high unit price or high-volume orders. Only so many
companies want to trade in airplane parts, for example.

That’s not to say this isn’t a good market to be in – a book may cost $5.99 on Amazon.com,
so their model is clearly volume: making millions by moving a large number of small-ticket
products. An airplane engine may be worth millions, so the number of deals will be smaller,
but the overall dollar volume may in fact be much larger than most C2B sites.

And that’s one of the things that drives B2B to need more than auctions. Remember, an auc-
tion is essentially an open market where the only relevant attribute of the market is price.
Exchanges are slightly more complex, but the main element of an exchange is still price
matching between the buyer and seller.

That’s where the model breaks down in B2B. Most B2B sites aren’t set up as a buyer or a sell-
er, but as a broker. They take a commission on the sale – most times from the seller, sometimes
from the buyer, occasionally from both. But because of the large price structure, and the
nature of their products, an auction isn’t always appropriate.

Most high-dollar products have multiple properties that affect the trade in different ways. For
example, a product may come in several grades. An offer to buy might be for the higher grade, but
in reality the buyer might be able to use the next highest grade should other options such as price
make it attractive. So the participants in this kind of market would want to trade not only on price
but also on grade. Then shipping, or location, or packaging or a hundred other factors may come
into play. Technically, they want multiple attribute trades. And what they really want is negotiations.

An auction almost always has an automated clearing. The highest bidder wins when the auc-
tion ends. A negotiation doesn’t necessarily end that way, because price is only one criterion for
assessing the best deal. You might have to figure in freight charges, which may be lower if the
seller is in the same state or higher if the seller is out of the country. You might be comparing two
similar grades, or two grades that can do the same job but have different efficiencies that need
to be accounted for. The rules are generally too complex to code to an automatic conclusion.

Other factors come into play. Auctions and exchanges are designed to be open to as wide an
audience as possible because it drives liquidity. Business deals don’t always work that way. A
company that sells steel to General Motors for $80 a ton doesn’t necessarily want GM to be able
to bid on their steel at $60 a ton in an online market, or even to know that they are providing
steel at that price. Anonymity is usually a requirement, but restriction of trading partners is also
common. These tend to constrain a market somewhat, but since many of these markets are for
multiple-attribute products, a commodity approach may not be appropriate anyway.

Unfortunately, at the moment there’s a big, negotiation-engine–shaped hole in the market.
There are no shipping products that handle negotiations; most really can’t even deal with mul-
tiple attributes. The race to get there first is heating up; Ariba isn’t the only company buying
market product makers. Better get in the bidding fast for that first negotiation company,
because it’ll quickly be going, going, gone!

F R O M T H E E D I T O R

E D I T O R I A L A D V I S O R Y B O A R D
TED COOMBS, BILL DUNLAP, DAVID GEE, MICHEL GERIN,

ARTHUR VAN HOFF, JOHN OLSON, GEORGE PAOLINI,
KIM POLESE, SEAN RHODY, RICK ROSS,

AJIT SAGAR, RICHARD SOLEY, ALAN WILLIAMSON

EDITOR-IN-CHIEF: SEAN RHODY
EXECUTIVE EDITOR: M’LOU PINKHAM

ART DIRECTOR: ALEX BOTERO
PRODUCTION EDITOR: CHERYL VAN SISE

SENIOR EDITOR: JEREMY GEELAN
ASSOCIATE EDITOR: NANCY VALENTINE

EDITORIAL CONSULTANT: SCOTT DAVISON
TECHNICAL EDITOR: BAHADIR KARUV

PRODUCT REVIEW EDITOR: ED ZEBROWSKI
INDUSTRY NEWS EDITOR: ALAN WILLIAMSON

E-COMMERCE EDITOR: AJIT SAGAR

W R I T E R S I N T H I S I S S U E
LINDEN DECARMO, RICK HIGHTOWER, JUSTIN HILL, MIKE JASNOWSKI,

TONY LAPASO, GABOR LIPTAK, BARRY MOSHER, SEAN RHODY,
TIMO SALO, JON SIEGEL, DAVID SKOK, A.V.B. SUBRAHMANYAM,

SAM WATTS, JASON WESTRA, ALAN WILLIAMSON

S U B S C R I P T I O N S
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: 800 513-7111
COVER PRICE: $4.99/ISSUE

DOMESTIC: $49/YR. (12 ISSUES) CANADA/MEXICO: $69/YR.
OVERSEAS: BASIC SUBSCRIPTION PRICE PLUS AIRMAIL POSTAGE

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $12 EACH

PUBLISHER, PRESIDENT AND CEO: FUAT A. KIRCAALI
VICE PRESIDENT, PRODUCTION: JIM MORGAN

VICE PRESIDENT, MARKETING: CARMEN GONZALEZ
ACCOUNTING MANAGER: ELI HOROWITZ
CIRCULATION MANAGER: MARY ANN MCBRIDE

ADVERTISING ACCOUNT MANAGERS: ROBYN FORMA
MEGAN RING

JDJSTORE.COM: JACLYN REDMOND
ADVERTISING ASSISTANT: CHRISTINE RUSSELL

GRAPHIC DESIGNERS:: JASON KREMKAU
ABRAHAM ABBO

GRAPHIC DESIGN INTERN: AARATHI VENKATARAMAN
WEBMASTER: ROBERT DIAMOND

WEB SERVICES CONSULTANT: BRUNO Y. DECAUDIN
WEB SERVICES INTERN: DIGANT B. DAVE

CUSTOMER SERVICE MANAGER: CAROL KILDUFF
CUSTOMER SERVICE: ANN MARIE MILILLO

ONLINE CUSTOMER SERVICE: AMANDA MOSKOWITZ

E D I T O R I A L O F F I C E S
SYS-CON PUBLICATIONS, INC.

39 E. CENTRAL AVE., PEARL RIVER, NY 10965
TELEPHONE: 914 735-7300 FAX: 914 735-6547

SUBSCRIBE@SYS-CON.COM
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944)

is published monthly (12 times a year) for $49.00 by
SYS-CON Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.

Periodicals Postage rates are paid at
Pearl River, NY 10965 and additional mailing offices.

POSTMASTER: Send address changes to:
JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

39 E. Central Ave., Pearl River, NY 10965-2306.

© C O P Y R I G H T
Copyright © 2000 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and
retrieval system, without written permission. For promotional reprints, contact reprint
coordinator. SYS-CON Publications, Inc., reserves the right to revise, republish and

authorize its readers to use the articles submitted for publication.

W O R L D W I D E D I S T R I B U T I O N B Y
CURTIS CIRCULATION COMPANY

739 RIVER ROAD, NEW MILFORD NJ 07646-3048 PHONE: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SYS-CON
PUBLICATIONS

sean@sys-con.com
AUTHOR BIO

Sean Rhody is the editor-in-chief of Java Developer’s Journal. He is also a principal consultant with Computer Sciences Corporation
where he specilaizes in application architecture – particularly distributed systems.

Going, Going, GONE!

Java COM

6 MARCH 2000

Together Soft
www.togethersoft.com

7MARCH 2000

Java COM

Soft-
Wired
p/u

www.javamessaging.com/ibus

P
ortals, e-commerce sites, B2B commerce and so on…we’re witnessing
unprecedented demand for e-business solutions of every stripe as compa-
nies rush to put their businesses on the Web. With Y2K now out of the way,

this has become the top IT priority.
In the past many of these solutions have been built on top of IRM (Internet Relationship Man-

agement) products such as Vignette and BroadVision whose primary specialization has been con-
tent management and personalization. For early Web sites, mostly serving up static content, this
was sufficient. But once the basic site is up and running, demand quickly shifts to more data-dri-
ven applications in which customers can place orders, see inventory, book travel, track packages
and the like. This requires the ability to develop highly scalable, enterprise-class Web applications
that can access existing corporate data and applications and provide high-end transactional capa-
bilities. This kind of capability is available only from application server and solutions vendors.

Because of the demand for both content management/personalization and back-end data
access/transactions, we’re about to see a collision between these two markets. In particular, almost every
application server vendor has begun developing e-business solutions that include IRM functionality based
on top of their application servers to meet the demand from their clients for more prebuilt functionality.

An important backdrop to this upcoming battle is the advent of an extremely important industry
standard, J2EE (Java 2 Platform, Enterprise Edition), that standardizes the way application servers
should work. This standard has been uniformly adopted by almost every application server vendor, and
is being enthusiastically adopted as the standard for Web development by much of corporate America.

J2EE is creating tidal waves in the Web application marketplace just as SQL did when it
swamped all other relational databases.

Prior to the standard, Web software companies – including IRM vendors such as Vignette and
BroadVision – wrote their own servers to support their applications and frequently spent as much as
70% of their energy on doing so. These were proprietary, with weak architectures missing important
features such as distributed objects, transactions, standardized data access and message queuing. Fur-
thermore, they provided proprietary scripting languages that weren’t up to the task of writing serious
enterprise applications. Today no software company in its right mind would write its own proprietary
server. It would simply write to the J2EE standard and support the leading J2EE servers in the market.

Because of the availability of J2EE standardized servers, there’s a backlash at customer sites
against the proprietary server architectures. Organizations standardizing on J2EE want to use this
architecture for all their e-business applications. That way they invest in learning a single skillset
that can be used across all projects, and they’re easily able to find developers who already know
the J2EE standard. They’re also able to use a much wider range of development tools since prod-
ucts such as Rational Rose and Macromedia DreamWeaver are adapted to support the J2EE stan-
dard. In addition, they can purchase add-on components and prebuilt software modules from
third-party vendors that comply with the J2EE standard.

As the content management/personalization vendors collide with the application server ven-
dors, you can see a major battle brewing. At stake is the huge e-business platform market. In the
one corner are Vignette, BroadVision and similar products, built on a proprietary architecture with
weak scripting capabilities. In the other corner are the application server vendors who are moving
into e-business solutions, leveraging their strong architecture.

The obvious move for the existing IRM vendors is to rewrite their products to be J2EE compli-
ant. Companies such as Vignette are describing multiphase plans to do something like this. But it’s
a difficult task that may well take years to accomplish correctly, during which time it may be close
to impossible to simultaneously evolve their solutions functionality at a rapid pace. Probable out-
come: loss of momentum and marketshare.

Several application server vendors are already pursuing the strategy of adding e-business solu-
tions to their product line and moving into the complete e-business platform space. Not all will be
successful, since the solutions skillset differs from the systems skillset that most possess. This sets
the stage for a series of important new battles: it’ll shortly become clear that an application server
without an IRM layer offering higher-level solutions functionality such as content management,
personalization, user profiling and shopping baskets will no longer be considered adequate.

Buyers are placing more and more emphasis on this part of the vendor’s offering, and view the
J2EE application server as a standardized component that isn’t highly differentiated from one
player to the next. So the winners will be those who best understand the requirements in this solu-
tions area and who move fastest to create the appropriate product offering.

Ultimately, an interesting battle will start to evolve between the traditional IRM vendors and
the new application server-based IRM offerings. As the application server vendors reach critical
mass with their functionality, we’ll see them begin to take significant market share away from the
traditional vendors because their industry-standard application server-based solutions will be
more complete and will offer far greater flexibility and customizability.

WRITTEN BY DAVID SKOK, CHAIRMAN/FOUNDER OF SILVERSTREAM SOFTWARE
G U E S T E D I T O R I A L

AUTHOR BIO
David Skok holds a degree in computer science from the University of Sussex in England and has started up successful companies in England,
Germany and France. He founded his first company (CAD/CAM) at age 22.

dskok@silverstream.com

Battle in the Making

8 MARCH 2000

Java COM

J D J F E A T U R E

Exception chaining (also known as “nesting exceptions”), is a tech-
nique for handling exceptions. A list is built of all the exceptions thrown as
a result of a single originating exception as it’s converted from lower to
higher levels of abstraction. It can be used in both client and server envi-
ronments to greatly simplify software debugging without adding undue
complexity. This article discusses good exception-handling techniques
and shows how to implement and use exception chaining.

Exceptions Are Part of the Interface
When our professors taught us about encapsulation and modular pro-

gramming, we were told that modules should hide the details of their
implementation. For example, an employee lookup service shouldn’t
advertise how or where it finds employees; only the methods required to
access this service should be publicly available. This reduces complexity
by isolating the implementation of one component from others that use it.

Most programmers realize that exceptions form an important part of
the interface of any class, but aren’t sure what to do with low-level excep-
tions that can’t be handled directly by their code. Throwing a low-level
exception from a higher-level class isn’t a good idea because it exposes
details of that class’s implementation. The correct solution is for the class
to catch the low-level exceptions, and to rethrow exceptions of a higher
level of abstraction. If the getEmployee() method retrieves employee
objects from a database via JDBC, for instance, a SQLException might be
caught inside the method. This exception would be converted to an
EmployeeLookupException and rethrown to the calling method.

Converting an Exception Object
There’s no way, of course, to simply change the type of an exception.

While it might be argued that we’re converting from a more to a less spe-
cific exception, we can’t cast one to the other because they don’t have a
parent–child relationship. For example, SQLException certainly doesn’t
extend from EmployeeLookupException or vice versa. In this article
“converting” an exception means to catch one exception type and throw
a brand new exception of a different class. It’s a conversion in the sense
that the new exception is a direct result of the earlier one. When the
EmployeeLookupException is created and thrown, it doesn’t mean that a
second error has occurred; it’s just new packaging to represent the orig-
inal error at a higher level of abstraction.

try {

stmt.execute(sql);

} catch (SQLException ex) {

throw new

EmployeeLookupException();

}

It quickly becomes obvious to many programmers that exception con-
version (without chaining) has a serious deficiency: the root cause of the
exception is lost. Is the EmployeeLookupException a result of a logon
failure or a SQL query error? Exception conversion can make debugging
more difficult.

I’ve argued in the paragraphs above that details of an implementation
should be hidden from the user of the method, but we don’t want to
make debugging more difficult than necessary. The distinction to be

HOW TO RECORD THE ROOT CAUSE OF HIGH-LEVEL

WRITTEN BY BARRY MOSHER

9MARCH 2000

Java COM

made is that the internal implementation details should be hidden from
the public API used at compile time, but this isn’t a reason to obscure the
cause and location of internal exceptions at runtime. We want to make
these easy to discern. Correct exception handling with exception chain-
ing achieves both these goals.

Upcasting and Other Poor Exception- Handling Techniques
One common solution to the problem of losing information with

exception conversion is to convert through upcasting (i.e., casting “up”
the tree to a superclass). Usually, the up-cast is to Exception and is pro-
grammed in an implicit manner by simply declaring that each method
throws Exception. This undermines the intent of requiring exceptions to
be caught in Java. The compiler doesn’t require the programmer to catch
any exceptions by this method.

public Employee getEmployee()

throws Exception

{

... database query code ...

}

While proper exception conversion adds context, making it more spe-
cific to the problem at hand, upcasting makes it more difficult to deter-
mine how to handle the exceptions. The desired exception conversions
are from lower to higher levels of abstraction. This rarely matches the
inheritance hierarchy of exceptions (which changes in amount of detail

rather than abstraction – a very subtle difference). Remember that the
abstraction a programmer seeks in designing a class should relate to the
problem area he or she is trying to solve. For example, Exception is more
generic than SQLException (a subclass of Exception), but it’s probably
not a higher level of abstraction for an employee lookup service.
EmployeeLookupException and NoPermissionException are good
examples of a higher level of abstraction in this case.

An even worse strategy for exception handling is to catch and log each
exception (or not) before ignoring it. As long as the exception is logged,
debugging is relatively straightforward. Unfortunately, this leaves no
way for the calling method to detect or handle the error, which again
eliminates the value of having exceptions.

What Is an Exception Chain?
An exception chain is a list of all the exceptions generated in response to a

single root exception (say, a SQLException). As each exception is caught and
converted to a higher-level exception for rethrowing, it’s added to the chain.
This provides a complete record of how an exception is handled (see Figure 1).

try {

stmt.executeUpdate(sql);

} catch (SQLException ex) {

throw new

EmployeeLookupException(

"Query failure",ex);

}

 EXCEPTIONS WITH EXCEPTION CHAINING

Java COM

10 MARCH 2000

The Implementation
The exception chain is implemented as a

linked list of exceptions in reverse order from
last exception thrown to first. Each exception is
a link in the chain. The first exception thrown
that begins the chain can be of any type –
there’s no need for any special functionality –
but all subsequent exceptions must have a way
of referring to the previous exception so that
the chain of exceptions can be maintained. In

addition, there must be some means for
accessing/examining the exception chain. I
refer to exceptions that provide these things as
being “chainable” – that is, an exception chain
can be constructed using them.

For my purposes a “chainable” exception
must do two things:
1. Provide at least one constructor taking

another (previous) exception as a parameter
and storing it.

2. Override each of the printStackTrace() meth-

ods to first print their own stack trace, then
invoke the corresponding printStackTrace()
method of the previous exception (given as a
parameter in the constructor).

The first requirement enables the exception
chain to be built. The second provides a simple
means of displaying the results by invoking
printStackTrace().

In practice, these simple rules allow chain-
ing to be added to exception classes without
forcing undue requirements on the users of
those classes. A programmer doesn’t need to
know about exception chaining, even when
using chainable exceptions. If chaining is used
(by passing the previous exception to the new
exception when converting), then the benefits
are seen in the stack traces. If it’s not used,
there’s no learning curve or overhead for the
developer, and he or she is no worse off than if
using nonchainable exceptions.

Any exception class can be written to meet
the requirements described above, regardless
of what its superclass is.

Let’s examine a simple implementation of a
chainable exception that extends Exception.
The ChainedException (see Listing 1) can be
used as a template when writing other chain-
able exceptions (e.g., copy the code overriding
the printStackTrace() methods), or simply
extended by those exceptions that would nor-
mally extend the Exception class.

Notice that the constructors take Throw-
ables as parameters rather than Exceptions.
This allows the “exception” chain to be made
up of any classes that can be thrown in Java,
including both compile time and runtime
exceptions as well as Errors. The implementa-
tion of these constructors is straightforward;
they save the reference to the given Throwable
instance with the _previousThrowable mem-
ber variable. This reference is used only by the
printStackTrace() methods.

Also note that some constructors don’t take any
Exceptions or Throwables as a parameter. These
constructors are used to create the root exception.

Generic
Logic

www.genlogic.com

Catch and handle final exception
(raise dialog, log to file, etc.)

BonusCalcException

EmployeeLookupException

SQLException

new SQLException()

Root Cause
(invalid SQL statement)

throw

throw

throw

Tail of chain

Reference

Reference

Head of Chain

FIGURE 1 How an exception chain is built FIGURE 2 Logging an exception chain to standard out

11MARCH 2000

Java COM

Microsoft
www.microsoft.com

Server (and Non-GUI) Applications
Using exception chaining in server applica-

tions is simple. Build the chain as normal, and
when logging exceptions be sure to use one of
the printStackTrace() methods. There’s no need
to log each exception as they’re caught. Only
the last exception of the chain has to be logged,
since it will display the message and call stack
of each exception in the chain.

There’s no harm if intermediate exceptions
are logged individually, however; the worst that
can happen is a slightly more cluttered log (see
Figure 2). Server administrators are familiar
with reading logs to determine errors, and are
grateful for the extra information provided by
using exception chaining.

The next section describes how a specialized
dialog class can make exception chaining
accessible in client programs.

Client Applications
One enormous benefit of the Java language

is its resilience to errors. Java programs aren’t
generally “auto-terminated” as a result of an
error; instead, the error is thrown (in the form

of an exception) up the call stack to be han-
dled. In a Java client application, if a runtime
exception isn’t handled, the main event dis-
patcher will print the exception’s stack trace
to standard out (or a Java console). This sim-
ple action is actually quite useful. While the
user’s button click won’t appear to have done
anything, at least a record of the error is avail-
able (if the Java console is visible and the user
knows to look at it). Therefore, many pro-
grammers decide to handle all exceptions
this way: log the exception and abort the
action.

A better approach is to inform the user of
any errors, usually via a dialog box. The best
dialogs clearly indicate two things: what action
failed, and why. I’ve implemented a dialog box
(called ExceptionDialog) for use with excep-
tions that provide that information. It can be
used equally with exception chains and single
exceptions; it doesn’t distinguish between the
two.

To use the ExceptionDialog, a “try/catch”
block is added to the individual GUI event
handlers the programmer has registered.
When an exception is caught by an event
handler, an instance of ExceptionDialog is

created (passing the exception as a parame-
ter) and displayed. The title of the dialog (also
passed in as a parameter to the constructor)
indicates to the user what requested action
has failed to occur because of the exception
being thrown. The dialog message string is
populated with the result of calling the excep-
tion’s getLocalizedMessage() method, provid-
ing the second important piece of informa-
tion – why that action couldn’t be completed.
Figure 3 shows an ExceptionDialog with
details hidden.

try {

... event handler code ...

} catch (Exception ex) {

ExceptionDialog dlg =

new ExceptionDialog(

frame,ex,

"Look-up failed.");

dlg.show();

}

To examine the cause of the exception in
more detail, the user clicks the “Show Details”
button to expand the dialog. The expanded
dialog (see Figure 4) displays the call stack of
the exception and, if it’s a chain of exceptions,
the call stack of each exception in the chain.
The information can be printed, or copied into
an e-mail and sent to the user’s help desk.

Listing 2 demonstrates exception chaining
and use of the ExceptionDialog class in a GUI
program. The BonusCalcException and Em-
ployeeLookupException classes (not shown)
both inherit from ChainedException.

The complete source code for all classes can
be downloaded from www.JavaDevelopers-
Journal.com.

Where Have I Seen This Before?
The RemoteException in RMI and the

ServletException from the Java Servlets API are
both chainable classes. Sun refers to excep-
tions as being “nested” rather than “chained,”
but the intentions are the same.

Working on the Chain Gang
My own experience with exception chaining

has shown it to be very valuable, and I tend to
use it in most projects I’m involved with. How-
ever, I’ve found one common scenario that
presents new hazards: distributed Java pro-
grams using RMI (remote method invocation).

The benefit of using RMI is that the distinc-
tion between local and remote objects is greatly
reduced. It’s not much more difficult to invoke a
method on a remote object than a local object,
except that the calling method must catch or
throw RemoteException. Using exception
chaining with exceptions that may be thrown
during a remote method invocation offers the
same benefits as with regular method invoca-
tions. It’s easy to determine the root cause of
errors even if they occurred in a remote object.

Java COM

12 MARCH 2000

FIGURE 3 An ExceptionDialog with details hidden

FIGURE 4 An ExceptionDialog with details shown

13MARCH 2000

Java COM

Microsoft
www.microsoft.com

Unfortunately, while the sets of classes available to client and server
applications overlap, they’re not usually identical. Server programs have
no need for GUI classes, and client programs have no need for database
classes. The set of classes (or at least JAR files) available to the client is
often intentionally stripped down to the minimum number required for
its functionality to minimize its footprint. Therefore, if an exception
chain containing a database-specific exception is thrown from the serv-
er to a remote client, it may not be possible to deal with it because the
client application doesn’t know what that database exception is. A Class-
NotFoundException will be thrown when there’s an attempt to unmar-
shal the unknown exception class.

Exception chaining can still be valuable in distributed applications.
The easiest way to prevent the problem described above is for each
application to be responsible for reporting its own exceptions. Methods
that can be invoked remotely should log their internal exceptions and
create a new exception for throwing remotely. The new exception should

not chain the previous exception. This guarantees that no unknown
exception types will be passed remotely by an exception chain.

Summary
Exception handling is often seen as a hindrance and treated as an after-

thought. In fact, good exception-handling techniques can greatly simplify
debugging. The exception-chaining technique is useful for both client and
server components, making it easier to determine the root cause of excep-
tions without increasing the complexity of work required to handle them.

AUTHOR BIO
Barry Mosher is a Java consultant in the San Francisco Bay Area. A Sun-certified Java programmer, Barry has
more than seven years of programming experience, including three in Java.

Java COM

14 MARCH 2000

// Filename: ChainedException.java
// Author: Barry Mosher

import java.io.PrintStream;
import java.io.PrintWriter;

public class ChainedException extends Exception
{

private Throwable _previousThrowable = null;

public ChainedException() {}

public ChainedException(String pMsg) {
super(pMsg);

}

public ChainedException(Throwable pEx) {
_previousThrowable = pEx;

}

public ChainedException(String pMsg,
Throwable pEx) {

super(pMsg);
_previousThrowable = pEx;

}

public void printStackTrace() {
super.printStackTrace();
if (_previousThrowable != null) {

_previousThrowable.printStackTrace();
}

}

public void printStackTrace(PrintStream pPS) {
super.printStackTrace(pPS);
if (_previousThrowable != null) {

_previousThrowable.printStackTrace(pPS);
}

}

public void printStackTrace(PrintWriter pPW) {
super.printStackTrace(pPW);
if (_previousThrowable != null) {

_previousThrowable.printStackTrace(pPW);
}

}
}

private void registerListeners()
{

calcBtn.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

try {
calculateBonuses();

} catch (Throwable ex) {
// Handle all exceptions
// by displaying a dialog.
ExceptionDialog exceptionDialog =

new ExceptionDialog(
BonusCalc.this,ex,
"Calculation Incomplete",true);

exceptionDialog.show();
}

}
});

}

// Simulates a calculation routine that can
// fail and throw exceptions.
private void calculateBonuses()

throws BonusCalcException {
try {

getEmployeeData();
} catch (EmployeeLookupException ex) {

// Convert the exception to a higher
// level of abstraction suitable for this
// method.
throw new BonusCalcException(

"Failed to get employee data.",ex);
}

}

// Simulates a query routine that can
// fail and throw exceptions.
private void getEmployeeData()

throws EmployeeLookupException {
try {

Connection con =
DriverManager.getConnection(
"invalid_connection");

} catch (SQLException ex) {
// Convert the exception to a higher
// level of abstraction suitable for this
// method.
throw new EmployeeLookupException(

"SQL query failed.",ex);
}

}

Listing 2: Example Use of Exception Chaining

Listing 1: The ChainedException Class

barrymosher@netscape.net

15MARCH 2000

Java COM

Sybase
www.sybase.com

Now that I think back, it was a fun-
filled month with huge amounts of
goings-on. If you remember last month’s
column you’ll know that, of late, I
haven’t been very impressed with what’s
happening at Sun. I essentially hinted at
the fact that we ought to keep an eye on
Scott McNealy. Ironically, this month I
discovered a wee piece of information
that makes my concerns even more rel-
evant.

Will Sun Eclipse Linux?
Ask anyone which operating system is

capturing the headlines. Unless they’ve
been hidden away in the darkest corners
of the Redmond campus, the answer
will usually be Linux. Why? One of the
main reasons is its cost – the damn thing
is free. Another reason is performance –
it works extremely well with very little
hardware. Couple these two excellent
advantages and you lock out
most of the competition.

But what if the compe-
tition gave away their
operating system?
That would definitely
weaken the justifica-
tion to move to Linux.
Well, guess what our
friends at Sun have just
gone and done? Begin-
ning this month, Solaris 8
will be free for both Sun and
Intel platforms. Quite a bold move
when you think about it, and one that I
believe will hit Linux very hard.

I suspect many of the large compa-
nies that are dithering over whether or
not to install Linux will probably
hang back and wait for Solaris 8.0.
Solaris is held in high regard by
many developers around the
planet, and I know my com-
pany will be installing the
beast and measuring it
against Linux. So watch
this space. One good
thing: now that Solaris
will be freely available, we
won’t have to wait for popu-
lar ports to Linux from the

large vendors that have already developed
Solaris ports. I’m interested in watching
this one and seeing where it heads. Let me
know what you think through our discus-
sion list (details of which are given later).

StringTokenizer
This month I’ve been wrestling with

the core class java.utils.StringTokenizer,
and spent a bit of time trying to get it
working the way the documentation
suggests. (Anyone on our mailing list
will know this story, so if that includes
you, skip past and move on to the next
section. I won’t be offended, honest.)

My problems started when I wanted
to spot fields with empty tokens. Let’s
consider the following, for example:

StringTokenizer ST = new StringTok-

enizer("this,is,a,test", ",");

int x = ST.countTokens();

A standard use of
this class, and you’d be

correct in assuming that
x would be 4. This use
of StringTokenizer has
no problems. Consid-
er the following exam-

ple, however, and have
a think about what the

value of x would be. No
cheating or reading ahead!

StringTokenizer ST = new String-

Tokenizer(",is,,test", ",");

Notice the empty tokens. This sce-
nario is not too untypical, especially if

you’re parsing CSV files produced from,
say, Microsoft Excel or some other export

routine. An empty token gen-
erally denotes an empty

column, so it’s a scenario
we need to know about.

Well, sadly, StringTok-
enizer returns back 2

in this instance,
which poses a po-
tential problem for
any parsing algo-

rithm.

Another problem with this class is its
inability to cope with nonstandard delim-
iters. Try parsing a string that’s delimited
by, say, the “>>” sequence. It won’t work.
However, if you follow the documenta-
tion, the constructor for StringTokenizer
accepts a String instance for the delimiter
and nowhere suggests that you can’t use
any nonstandard delimiter. If indeed this
class is meant to use standard delimiters,
the constructor should only be accepting
a flag or something that forces the devel-
oper to use it. For example:

StringTokenizer ST = new StringTok-

enizer("this,is,a,test", StringTok-

enizer.COMMA);

…which would make far more sense
than what happens now. At least this
takes the guesswork out of it. We dis-
cussed the problem at great length on
the mailing list, and I believe it was Blair
Wyman who highlighted the fact that
strtok in C operates along the same
lines. It could be argued that StringTok-
enizer merely provides an easy transi-
tion path, but I don’t accept that. This is
Java, not C. Java has an opportunity to
get all the quirks ironed out once and for
all, presenting the developer with a
clear, concise library of tools.

I submitted this to the official bug
report, and asked that they either
change the functionality of StringTok-
enizer or update the documentation to
warn developers that it doesn’t do what
you might expect it to. As part of the bug
report, I sent an alternative implemen-
tation to StringTokenizer, which we use
as part of our n-ary core library set. Ours
works. If you want to vote for this bug, or
check out its latest status, the bug ID is
4133287. The official response from Sun
on a number of other StringTokenizer-
related bugs is: “It’s not meant to be a
fully functional string scanner.” What
sort of answer that is, I have no idea. I’ll
keep you updated on this one.

Couldn’t String Two Words Together

WRITTEN BY
ALAN WILLIAMSON

Java COM

16 MARCH 2000

W
hen I sat down to write this month’s column I tried desperately to come up
with something. I was beginning to panic, as nothing seemed to come to mind.
Then I took a wee walk and munched down on some pizza. Suddenly, BANG!
The whole month’s activities came flooding back to me. So kick back, take
some time out and lend me your eyes for, oh, I don’t know, 10 minutes.

17MARCH 2000

Java COM

Persistence
www.persistence.com

Support Award of the Month:
Hall of Shame

This month we recruited a couple
more developers to our team here in
Scotland. This meant that we had to
purchase a couple more development
machines for them to use. We usually
purchase from either Gateway or Dell,
depending on who’s offering the most
for the lowest price. Nine out of 10
times there’s little difference between
the two, and this time we plunked for
Dell. What a painful choice this turned
out to be!

As some of you know, I’m no fan of
Microsoft’s ASP technology, which I’ve
dubbed “A Severe Pain!” – I prefer the
much more portable Java Servlet solu-
tion. Anyone who actually advocates
any Microsoft solution for a high-traffic
Web site requires a complete brain-bios
update. Dell is a great example of a site
that should really rethink its back-end
technology, and do it fast. To cut a long
story short, I set out to order two
machines – and ended up getting six!

The Web order failed right at the end
where you submit your confirmation of
the transaction. A wonderful “ASP
scripting error” page comes up. Okay,
not a problem, methinks. I’ll report it to
them so someone can fix it. The least I
can do. I quickly locate the Customer
Services section and proceed to fill out
the form indicating my problems, only
to have another ASP error when I hit the
submit button. Argh! The whole site is
based on ASP! Disaster. I spent a long
time looking for a page with normal e-
mail and after 20 minutes I found one.
But I’m still waiting for a response. Hav-
ing ventured unsuccessfully into the
world of e-commerce, I reached for the
tried and trusted phone and placed my
order with a sales representative. You
ring up Dell and a phone menu is read
out to you. If you press Business Sales,
you’re put through to someone instant-
ly. But, oh, boy, it’s a different story
when you want to speak to Customer
Services!

Dell is being a little too clever with
their database, and before I knew it I had
ordered the machines for the company
that used to be in the building, with the
actual machines being shipped to our
old (three years old) London address,
400 miles away. Go figure! The fax con-
firmation indicated that you should
simply ring up your sales representative
and they’ll make any corrections. Oh, if
only it were that simple!

We phone, and after 45 minutes we
get through to someone new. They say
they can take the corrections and e-mail
them to our sales representative. Eh???

Oh, well, who am I to criticize Dell’s
well-oiled engine. Another fax confirma-
tion comes through, but this time it’s for
four machines, but two of them are
being delivered to our new address, so I
guess it’s an improvement.

We ring again. Wait for about the
same amount of time – and get through
to yet another lady, who takes around 25
minutes to fix our problem. Remember,
it took only 10 minutes to place the
order in the first place! She said she
couldn’t update the original order as
only our sales representative had access
to that. She said she’d e-mail him with
the changes. Oh, here we go again.

I said, “Can you cc me into that e-
mail?” The answer, I think, will go to the
grave with me. She said that this wasn’t
possible as they worked on an internal
e-mail system that wasn’t available on
the open Net. Dell, one of the largest
companies in the world, not able to send
e-mail? I think this was a wee fib to dis-
courage customers from e-mailing their
sales representatives directly.

Our sales representative eventually
called back – four days after the original
order was placed – and got it all fixed,
but we’ll never purchase from Dell
again. As regular readers know, I
warned last month that I’d be starting
this feature, and I’m proud to nominate
Dell for this month’s Hall of Support
Shame.

A classic case of being too quick to get
the sale and not really worrying about
the actual delivery. This award scheme is
out to expose some of these companies
and improve the overall customer ser-
vice we Java people have to put up with.

Mailing List
I think most of you are now aware of

the new address for the mailing list server.
But I’m still getting requests for the old
system, so I guess a lot of you keep your
JDJ’s and read them over again. Which is
good. The topics of conversation are var-
ied and entertaining. We talk about any-
thing that comes into the mind of our
developers. So stop by and join in the fun.
To sign up, or even to just stop by and
have a look at what’s being posted, head
on over to http://listserv.n-ary.com/mail-
man/listinfo/straight_talking.

Our radio show is gaining in popular-
ity too (http://radio.sys-con.com/). I,
with my cohost, Keith Douglas, present
a daily 15–20 minute Straight Talking
show. We play music, talk Java, talk
mailing list – and with the Riddler offer-
ing prizes for anyone that answers his
riddles correctly, what have you got to
lose?

Salute of the Month
This month I’d like to acknowledge

my radio cohost, Keith Douglas. This
poor man has had, I think, the most
stressful month in his life and he has
coped admirably. We have had to deal
with a particularly awkward project
manager who, to be frank, really hasn’t a
clue about anything technical. Which
makes it even more ironic when that
person has been placed in a position of
responsibility for a software project. I’m
sure you’ve had to put up with similar
people. You know the sort, the ones who
have no real idea what the cc field in an
e-mail is all about and manage to cc
everyone and their dog when something
goes wrong. Just a shame. The actual
fault was on their end, not ours, so lots
of red faces. But Keith dealt with her very
well and I thank him.

• • •
The time has come for me to bid you

farewell. My wonderful Java-touting girl-
friend expressed concern over my recent
music tastes ranging from Neil Diamond
right through to Dolly Parton. Well, the
good news is that it’s not quite as bad as
it used to be. I’m now moving to more
mainstream pop, with Geri Halliwell
providing this month’s entertainment. So
with that I say, “Look at Me,” and am off!

Java COM

18 MARCH 2000

Beginning this

month, Solaris 8 will

be free for both Sun

and Intel platforms.

Quite a bold move

when you think

about it, and one

that I believe will hit

Linux very hard

‘‘

’’

alan@sys-con.com

19MARCH 2000

Java COM

SlangSoft
www.slangsoft.com

Java COM

20 MARCH 2000

Seque Softw
www.seq

21MARCH 2000

Java COM

ware Spread
que.com

Java COM

22 MARCH 2000

T
he use of Java in Web browsers has had mixed

results. Applications that run in browsers rather

than locally find a host of different hurdles. They’re

more restricted, run slower at times and take a long

time to load, thus making complex applications

more difficult. Advances in security and virtual machine technology

have addressed the first two items. The third item remains somewhat

challenging. Faster modems, increased bandwidth and compressed file

formats alleviate the problem somewhat but their impact varies. When

fourth-generation browsers appeared, they included some new technol-

ogy with features that allowed developers to have their applets and sup-

porting classes installed permanently.

This article is focused on distributing Java classes that are permanent-
ly installed on a user’s machine (see Figure 1). The next time a user visits
the page, the classes are loaded locally instead of from the network. I’ll
start with a short explanation of some concepts and tools used in this
process, and apply this knowledge to a working example for Internet
Explorer and Netscape Communicator. We’ll then look at some problems
that can occur and some links to additional information.

The examples in this article use a test certificate, not a production cer-
tificate from a Certificate Authority. For purposes of this article, I thought
a test certificate – also referred to as a self-signed certificate – was best
since not everyone has a certificate. It also teaches you how to generate
a certificate for testing. Regardless, the procedures described here apply
exactly the same when you’re using a real certificate. When you have a
real one, you can just skip the parts about generating a test certificate.

The software used in this article was:
• IE4.0 40bit
• NS Communicator 4.51 with SmartUpdate
• MS Personal Web Server (create a virtual directory called “sample” to

run samples)
• MS Windows NT 4.0 SP4

In a typical scenario visitors to a Web page download any elements into
their browser cache. This could include the page itself, and some images
as well as applets. Depending on browser settings, the next time users visit
the page all of these elements may be reloaded from the Web site. This is
certainly feasible for elements such as HTML and images, but can be time-
consuming and frustrating for users of your applets. Internet Explorer and
Netscape have different approaches to the actual implementation of
downloading and installing, but they also share some common ideas.

Digital Certificate and Signatures
The use of digital signatures and certificates to verify the authenticity

of software is nothing new. Software downloaded over the Internet pro-
vides the user no assurance about the authenticity of the author, where
the software came from or when it was created. A common metaphor for
a digital certificate used in code signing is “shrink-wrap.” Software
bought off the shelf at your local retailer is packaged with labels and
markings indicating the company of origin. Software downloaded over
the Internet has no such visible labels or markings.

Installing

JAVA
with
the
Browser

Installing

JAVA
with
the
Browser

WRITTEN BY MIKE JASNOWSKI

J D J F E A T U R E

That’s where digital certificates and signatures come in. The combina-
tion of digital certificates and signatures provides the labeling or shrink-
wrapping that supplies information such as author name, time created
and expiration date; they also ensure that the software wasn’t tampered
with since it was signed. A third party – a Certificate Authority (CA) – nor-
mally issues certificates. Basically, the Certificate Authority vouches for
the identity of the individual using the certificate to sign his or her soft-
ware. Popular CA’s are Verisign and Thawte. You may also be able to
obtain a certificate from your own company, if they’re set up to issue cer-
tificates.

Netscape and Internet Explorer certificates are based on the standard
x509, but deviate after that to produce certificates that are incompatible
with each other. Internet Explorer has its Authenticode certificates;
Netscape, its Object-Signing certificates.

Packaging
The use of packaging mechanisms to bundle your code and support-

ing files is common in both browsers. Internet Explorer uses the CAB
format and Netscape uses the JAR format. This provides for quicker
download times and is a requirement if you want to use managed instal-
lation mechanisms provided by Internet Explorer and Netscape Com-
municator. The former recognizes the JAR format but is unable to rec-
ognize a digital signature within. The latter doesn’t recognize the CAB
format.

Tools
There are utilities for both browsers that allow developers to generate

self-signed digital certificates as well as packages, and sign their code.
The first five utilities described here are for Internet Explorer only. The
last one is for Netscape Communicator only. See the Links section for
tool locations. If you have the Microsoft SDK for Java, you may already
have the Microsoft utilities.

23MARCH 2000

Java COM

DIRECT IE
AND NS TO

INSTALL YOUR
APPLETS AND

CLASSES
PERMANENTLY

DIRECT IE
AND NS TO

INSTALL YOUR
APPLETS AND

CLASSES
PERMANENTLY

First Visit

Second Visit

HTML

HTML

01011100

01011100

FIGURE 1 Classes that are premanently installed loaded locally after
first visit

Java COM

24 MARCH 2000

• MAKECERT: Generates a test x509 certificate
• CERT2SPC: Generates a test Software Publishing Certificate from an

x509 certificate
• SIGNCODE: Signs code using a Software Publishing Certificate for IE
• CABARC: Builds a cabinet file of specified files
• DUBUILD: Builds a cabinet and OSD and is an all-in-one tool. If you’re

uncomfortable with XML or don’t wish to build your OSDs, this tool is
for you. If you’re up to it, you can also code the OSD by hand

• SIGNTOOL: Packages and signs code using an object-signing certifi-
cate for Netscape; also used for generating test object-signing certifi-
cates

Scripted Install Procedure
The Microsoft virtual machine and its Java Package Manager use an

XML-based description language, Open Software Description (OSD),
that directs the Java Package Manager on how to handle different aspects
of the download (see Listing 1). An OSD is also used to describe any
dependencies between various components of the download. Netscape,
on the other hand, uses a combination of JavaScript and Java in the
package “netscape.softupdate.*” to allow developers to write scripts that
control the flow of the installation (see Listing 2). Each of these proce-
dures allows developers to control their installation by querying proper-
ties such as:
• OS version
• Browser version
• Software version
• Ensure proper space exists before install
• Dependencies between different Java packages and versions

Depending on which procedure you’re using, some of these proper-
ties may not be available.

Managed Installation
Both browsers have an installation manager available to perform the

actual install. Internet Explorer uses the Java Package Manager. Netscape
uses the JAR Installation Manager and a feature called SmartUpdate.
These installation managers allow the developer to install and update
software automatically.

JAVA PACKAGE MANAGER
The Java Package Manager was introduced in Internet Explorer 4.x

and provides the following features:
• Version Control: Enables you to update older versions of your software

and ensure that software isn’t downgraded. Note: You can’t downgrade
your software with the Java Package Manager.

• Namespaces: Prevents collisions between same-named packages.
Before namespace, packages were installed into the CLASSPATH and
provided no protection for libraries that may have had identical pack-
age names. By providing a namespace for each installed package, you
avoid this collision. There’s also a global namespace. Packages
installed into the global namespace are accessible to all Java Packages.
This would be ideal for a generic library that other installed applica-
tions could use.

• Improved Security: Fine-grained security is now possible. The Java
Package Manager requires that packages be signed with the Java Per-
missions to step out of the sandbox. With these permissions you can
control access to the UI, the file system and other system resources
such as sockets and threads. You can use the default permissions pro-
vided by the different levels (high, medium and low) or you can spec-
ify a custom permissions file.

You can view already installed packages by opening the “Down-
loaded Program Files” folder in your Windows Explorer. You can also
see this same list using Internet Explorer. Open View—>Internet
Options—>Settings—>View Objects. Unlike Netscape, once a package
is installed, you can begin using it immediately.

JAR INSTALLATION MANAGER/SMARTUPDATE
The JAR Installation Manager and SmartUpdate were introduced in

Netscape 4.x and provide features similar to those in the Java Package
Manager. Some features of SmartUpdate may not be available, depend-
ing on the version of Communicator used.
• Version Control: As with the Java Package Manager, you can update

older versions of your software and ensure that it isn’t downgraded.
However, SmartUpdate also gives you a couple of advantages over the
features provided by the Java Package Manager: (1) you can down-
grade previously installed packages, and (2) you can force an install
despite the version. SmartUpdate maintains this in the Client Version
Registry. Unlike the Java Package Manager, when you install a package
with SmartUpdate, you must restart Communicator before you can
use it. Your install script should indicate this with a dialog.

• Improved Security: Fine-grained security is now possible. The JAR
Installation Manager requires packages to be signed in order to be
installed and step out of the sandbox. One noticeable difference
between IE and NS is that IE’s permissions are encoded with the digi-
tal signatures, whereas NS requires the use of the “Capabilities” API to
request permissions at runtime.

• Registry of Installed Applications: Netscape provides a Client Version
Registry area that records all installed software registered for use with
Communicator.

Sample Application
Now that we have some of the basics behind us, let’s start applying it.

We’re going to install a basic clock applet (see Listing 3), then write an
HTML page that demonstrates the installed applet. Please note the
package statement in the source. The Java Package Manager requires you
to place your classes into a package. Once you’ve compiled the source,
we’ll start with the process for Internet Explorer, then Netscape Com-
municator.

Internet Explorer
1. Generate a test x509 certificate.

The options used for this step are:
• -sk: Key Name
• -n: Certificate Subject x500 Name (i.e. CN=My Name)

makecert –sk SampleKey –n "CN=TestCertificate" SampleTestCert.cer

2. Turn an x509 certificate into a Software Publishing Certificate.

cert2spc SampleCert.cer SampleTestCert.spc

3. Create your distribution unit.
The options used for this step are:

• /D: Distribution unit name or “friendly name”
• /I: Include files matching this pattern
• /V: Version number for distribution unit

dubuild sample.cab . /D "Sample Application" /I *.class /V 1,0,0,0

By not using the /N option, we’re placing our package into the global
namespace. To get an idea what the OSD generated by dubuild looks like,
open your CAB and view the generated OSD file. It should look like the
one in Listing 1.

4. Sign your code.
During this step you’d normally supply an additional parameter, –t, to

indicate a URL to a time-stamping CGI on your Certificate Authority’s
Web site. However, due to firewall considerations, this may be impossi-
ble. For test purposes this isn’t a problem. You’ll see a message indicating
the CAB has been signed but not time-stamped.

The options used for this step are:

25MARCH 2000

Java COM

PointBase
www.pointbase.com

Java COM

26 MARCH 2000

• -j: Indicates the source of the Java permissions
• -jp: A parameter to pass to javasign.dll. In this case, the security level

of medium
• -spc: The software publishing certificate generated in step 2
• -k: The key generated from step 1

signcode –j javasign.dll –jp medium –spc SampleTestCert.spc –k Sam-

pleKey sample.cab

With our code packaged and signed, we’re ready to deploy. We’ll use
the <APPLET> tag with three parameters:
• useslibrary: Specifies a name for the distribution unit, which should

match the one you specified when you ran dubuild
• useslibrarycodebase: Specifies the codebase for the distribution unit CAB file
• useslibraryversion: Specifies the version number, which should

match the one you specified when you ran dubuild

<APPLET CODE=com.mysample.application.Sample HEIGHT=20 WIDTH=100>

<PARAM NAME=useslibrary VALUE="Sample Application">

<PARAM NAME=useslibrarycodebase VALUE="sample.cab">

<PARAM NAME=useslibraryversion VALUE="1,0,0,0">

</APPLET>

These parameters will be ignored in Internet Explorer version 3 and
Netscape browsers. Once you’ve saved the page, open it in your browser.
If everything went okay, you should see a Security Warning dialog. Click
on “Yes” to trust; you should then see the sample applet start.

VERIFY INSTALLATION
Open the “Downloaded Program Files” folder in Windows Explorer or

do a View—>Internet Options—>Settings—>View Objects and you
should see the same display (see Figure 2). Behind the scenes the Java
Package Manager is also updating the registry entries for your distribu-
tion unit. Run regedit and open “HKEY_LOCAL_MACHINE\Soft-
ware\Microsoft\Code Store Database\Global Namespace”. You should
see keys for all packages installed in the global namespace, top-level
first. Open the “com” key and you’ll see the “mysample” key underneath
it.

Netscape Communicator
We’ll now examine the process for Netscape Communicator. Note:

Please shut down Communicator before running step 1 or you risk cor-
rupting Communicator’s security database. You’ll also note that the sign-
ing and packaging steps are combined. To create and store an object-
signing certificate, you’ll also need to have a password set. If you don’t,
step 1 will fail. To set a password, open the Security Window and select
“Passwords.” As you’ll see shortly, to permanently install Java Packages
to run locally, you must place your signed JAR of classes inside another
JAR containing an install script (see Figure 3). Wherever you specify the
path to the certificate directory, you’ll need to replace the path of the cer-
tificate database to match the path on your system.

1. Create test object-signing certificate.
The options used for this step are:

• G: The nickname of our object-signing certificate
• -d: The location of the certificate database

signtool –G"SampleNetscapeObjectCert"

–d"e:\progra~1\netscape\users\default"

When you run signtool you’ll be prompted for a number of parame-
ters, as it states in the message before it runs. These are optional except
for the database password. You can bypass them by pressing “Enter.” To
verify your certificate has been added, type the following command:

signtool –L –d"e:\progra~1\netscape\users\default"

You should see a list of Certificate Authorities, including yours, with
asterisks beside them. The asterisk means that this certificate can be
used to sign objects. If you decide not to install directly into Communi-
cator, you can import your certificate by placing a link to it on a Web
page, then clicking on it. You’ll be guided through a series of dialogs to
install it. If you’re distributing this test object-signing certificate from a
Web site, you’ll also need to configure a MIME entry for it on the Web
server you’re using. You can also start Communicator and look at the
Security Info Window. Click on “Signers” under “Certificates.” You may
have to scroll until you see “SampleNetscapeObjectCert”.

2. Create install script (see Listing 2).
The install script’s purpose is to direct the actual install.

3. Create and sign Software JAR.
The options used for this step are:

• b: Specifies the base filename for the .rsa and .sf files
• d: Specifies the location of the certificate directory
• k: Specifies the nickname of the test object-signing certificate created

in step 1
• Z: Directs signtool to create a JAR with the specified name

signtool –b "Sample Application"

–d"e:\progra~1\netscape\users\default" –k SampleNetscapeObjectCert

–Z sample.jar .

4. Create and sign Install JAR.
Now we’ll create the install JAR that will hold our install script and

software JAR. You’ll be prompted for the certificate database password.
You can also use the “-p” option to specify the password. I’d recommend
using this option only during testing as the password is visible.

Ins
tal

l S
cri

pt

Install JAR

Software JAR

FIGURE 3 Netscape requires your software to be packaged inside
another JAR with install script.

FIGURE 2 Downloaded program files

27MARCH 2000

Java COM

Tidestone
www.tidestone.com

Java COM

28 MARCH 2000

• b: Specifies the base filename for the .rsa and .sf files
• i: Specifies the name of the install script
• d: Specifies the location of the certificate directory
• k: Specifies the nickname of the test object-signing certificate created

in step 1
• Z: Directs signtool to create a JAR with the specified name

signtool –b sampleinst –i sample.js

–d"e:\progra~1\netscape\users\default" –k SampleNetscapeObjectCert

–Z sampleinst.jar .

Now that the classes are packaged and signed, we can deploy. We’ll be
using what’s referred to as a trigger script (see Listing 4). Once you’ve saved
the page, open it in your browser. If everything went okay, you should see a
Security Warning dialog. Click on “Grant” to trust, then you’ll see a dialog
indicating Communicator must be restarted before using the new classes.

Verifying Installation
Start Communicator and open Edit—>Preferences—>Advanced—>

SmartUpdate. You’ll see your package name in the listing of installed
software (see Figure 4).

Using the Installed Software
Let’s try out the newly installed package. Put the following code into a

page and bring it up in your browser (see Figure 5). Notice there is no
CAB base or archive parameter specifying the cabinet or JAR where the

classes are to be found. That’s because the classes are being loaded local-
ly by the browser.

<HTML>

<BODY>

<H1> Our Sample Installed Application </H1>

<APPLET CODE=com.mysample.application.Sample HEIGHT=20

WIDTH=200></APPLET>

</BODY>

</HTML>

Updating Your Software
Eventually most software needs to be updated. New hardware, bugs or

new versions can create this need. With the Java Package Manager and
Netscape with SmartUpdate, you can update the version a user has
installed with the same ease. Simply increment the version numbers
appropriately and update your HTML page and/or the install script. The
next time users visit the page, they’ll be prompted to install a new version
if the version you specified is newer than the installed version.

Problems
Sometimes things go awry. You may see messages indicating security

failures or you may see nothing on the page. There are tools to aid in diag-
nosing download failures. CODLLGVW is a utility that examines the code
download error log created during download. Netscape includes a host of
error codes that could arise during SmartUpdate. In Internet Explorer one
of the most common is that there may be insufficient disk space to install
your component. Another possible area is errors in the OSD. The CDF
utility can be used to find possible errors in your OSD, such as missing or
misspelled tags. Another problem I’ve seen is not specifying a package in
your OSD that’s in your CAB. Also, make sure the name you use in the
useslibrary tag matches the friendly name of your distribution unit. And
when using IE, make sure the version numbers match on your usesli-
braryversion tag and the one you specified when you ran DUBUILD.

Summary
As you can see, distributing your code for permanent installation isn’t

difficult. And I’m sure the users of your applet will appreciate the
decreased loadtime. Although the process for each browser is somewhat
different, it’s similar overall.

The following links should provide any further details you may need.
Good luck!
1. Packaging Components for Internet Distribution:

http://msdn.microsoft.com/workshop/delivery/download/tutori-
als/buttons_download.asp

2. Deploying Java in Internet Explorer and Netscape Communicator:
http://support.microsoft.com/support/kb/articles/q179/6/52.asp

3. Downloading Code on the Web:
http://msdn.microsoft.com/workshop/components/downcode.asp

4. Object Signing – Establishing Trust for Downloaded Software:
http://developer.netscape.com:80/docs/manual/signedobj/trust/
owp.htm

5. Object Signing Resources:
http://developer.netscape.com:80/docs/manuals/signedobj/
overview.html

6. SmartUpdate Developers Guide:
http://developer.netscape.com:80/docs/manuals/communicator/
jarman

AUTHOR BIO
Mike Jasnowski, a Sun-certified Java programmer, has 17+ years of programming experience and 3+ years
with Java. He works for a software company in Kansas City, Missouri.

FIGURE 5 Output of the sample application

FIGURE 4 Installed packages in Netscape Communicator

mjasnowski@cerner.com

29MARCH 2000

Java COM

Idea Integration
www.idea.com

Java COM

30 MARCH 2000

<?XML version="1.0"?>
<!DOCTYPE SOFTPKG SYSTEM "http://www.microsoft.com/stan-
dards/osd/osd.dtd">
<?XML::namespace
href="http://www.microsoft.com/standards/osd/msicd.dtd"
as="MSICD"?>

<SOFTPKG NAME="Sample Application" VERSION="1,0,0,0">
<!-- created by DUBuild version 5.00.3023 -->

<TITLE>Sample Application</TITLE>

<MSICD::JAVA>

<PACKAGE NAME="com.mysample.application" VER-
SION="1,0,0,0">

<IMPLEMENTATION/>
</PACKAGE>

</MSICD::JAVA>

</SOFTPKG>

//* Sample JavaScript installation script

// Make sure Java is enabled before doing anything else

if (navigator.javaEnabled()){

answer = confirm("Do you want to install Sample Application?");

if (answer){

// Create a version object and a software update object

vi = new netscape.softupdate.VersionInfo(1,0,0,0);
su = new netscape.softupdate.SoftwareUpdate(this,"Sample

Application");

// Start the install process
err = su.StartInstall("java/download/Sample

Application",vi,netscape.softupdate.SoftwareUpdate.LIMITED_INS
TALL);

if (err == 0){
// Find the Java Download directory on users computer
JavaFolder = su.GetFolder("Java Download");

// Install the JAR File. Unpack it and list where it goes
err = su.AddSubcomponent("Sample

Application",vi,"sample.jar",JavaFolder,"",this.force);
}

if (err != 0){
alert(err);

su.AbortInstall();
alert("Installation Aborted.");

}else{
su.FinalizeInstall();
alert("Installation complete. You must restart Communica-
tor to use the Sample Application");

}
}

}

package com.mysample.application;

import java.applet.Applet;
import java.awt.Graphics;
import java.lang.Runnable;
import java.util.Date;
import java.awt.Color;

/**
*
* Sample.java
*
* @author Mike Jasnowski
* @version 1.0
*/
public class Sample extends Applet implements Runnable{

private String time_string;
private Thread runner = null;

public void init(){
runner = new Thread(this);
runner.start();

}

public void run(){
while (true){

time_string = new Date().toString();
repaint();
try {

runner.sleep(100);
} catch(InterruptedException e){}

}
}

public void paint(Graphics g){
setBackground(Color.white);
g.drawString(time_string,12,12);

}

}

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">

// Ensure Java is enabled

if (navigator.javaEnabled()) {

// Create a Trigger Object

var trigger = netscape.softupdate.Trigger;

// Create a VersionInfo object

version = new netscape.softupdate.VersionInfo(1,0,0,0);

// Make sure SmartUpdate is available

if (trigger.UpdateEnabled()){

// Call ConditionalSoftwareUpdate pointing to Install JAR

trigger.ConditionalSoftwareUpdate ("http://local
host/sample/sampleinst.jar","java/download/Sample
Application",version,trigger.DEFAULT_MODE);

}else
alert("Enable SmartUpdate before running this
script.");

}
else

alert("Enable Java before running this script.");

</SCRIPT>
</HEAD>
<BODY>
</BODY>
</HTML>

Listing 4

Listing 3

Listing 2

Listing 1

31MARCH 2000

Java COM

NuMega
www.compuware.com

Java COM

32 MARCH 2000

WRITTEN BY
TONY LAPASO

Avoid damnation with careful use of daemon threads

H
ave you ever wondered why it’s necessary to call Sys-
tem.exit() to force your Java UI application to exit? Have a
look at the code in Listing 1.

D A E M O N T H R E A D S

After the setVisible() method has been
called at line 15, the main() method
completes execution. Why doesn’t the
program end at that point?

The answer to this question is rooted
in a subtlety of Java’s thread creation
mechanism.

Java makes a distinction between a
user thread and another type of thread
known as a daemon thread. The differ-
ence between these two types of threads
is straightforward. If the Java runtime
determines that the only threads run-
ning in an application are daemon
threads (i.e., there are no user threads),
the Java runtime promptly closes down
the application. On the other hand, if at
least one user thread is alive, the Java
runtime won’t terminate your applica-
tion. In all other respect(s) the Java run-
time treats daemon threads and user
threads in exactly the same manner.

When your main() method initially
receives control from the Java runtime, it
executes in the context of a user thread.
As long as the main-method thread or
any other user thread remains alive, your
application will continue to execute.

To see just how a thread becomes a
daemon thread, read on.

Going to the Devil
There are two ways a thread can

become a daemon thread (or a user
thread, for that matter) without putting
your soul at risk. First, you can explicitly
specify a thread to be a daemon thread
by calling setDaemon(true) on a Thread
object. Note that the setDaemon()
method must be called before the
thread’s start() method is invoked, as the
following snippet shows:

1: Thread t = new Thread() {

2: public void run() {

3: System.out.println("I’m a

man of wealth and

taste...");

4: }

5: };

6:

7: t.setDaemon(true);

8: t.start();

The second technique for creating a
daemon thread is based on an often
overlooked feature of Java’s threading
behavior. If a thread creates a new thread
and doesn’t call setDaemon() on the new
thread before it’s started, the new thread
will inherit the “daemon-status” of the
creating thread. For example, unless set-
Daemon(false) is called, all threads cre-
ated by daemon threads will also be dae-
mon threads; likewise, unless setDea-
mon(true) is called, all threads created
by user threads will be user threads.

The program in Listing 2 illustrates
this behavior. The program creates a
thread, t1, whose only purpose in life is
to create another thread, t2, whose des-
tiny is to print a greeting, “Pleased to
meet you,” for all eternity. If you run this
code you’ll see that even though the
main thread ends, t2 goes on forever,
printing its tempting message. This
behavior is due to the fact that t2 inherit-
ed its user thread status from its creator,
t1. t1 in turn inherited its user thread sta-
tus from its creator, the main-method
thread, which, as I said, is always created
by the Java runtime as a user thread.

By uncommenting line 18, t1 be-
comes designated as a daemon. When t1
creates t2, it too becomes a daemon
thread. As a result, when the main-
method thread exits, the Java runtime
will end the application, since the only
remaining thread (t2) is a daemon. This
may or may not be the functionality you
wanted or expected.

Exorcise the Daemons
Applying what we’ve learned about

daemon threads, let’s consider again
why it’s usually necessary for a Java
graphical application to call Sys-
tem.exit() in order to end. As it turns
out, the first time an application makes
a user-interface component (e.g.,
Frame) visible, Java’s internal AWT
plumbing creates several threads
behind the scenes. These threads are
responsible for handling event queue
management and window repainting.
Typically, the first UI component made
visible is a Frame or Dialog (or one of
their JFC derivatives) via a call to setVis-
ible(true). If the call to setVisible() is
made from within a user thread (such as
the main-method thread), these new
AWT threads will also be user threads
and won’t be shut down simply because
the main-method thread ends. This
explains why your user interface is visi-
ble even after the main-method thread
ends.

Let’s put what we’ve learned to the
test. The program in Listing 3 creates a
Frame from within a daemon thread.
After the daemon thread is created, the
main thread goes to sleep for five sec-
onds and then ends. Once the main-
method thread ends, there are no longer
any user threads, so the Java runtime
shuts down the application.

Don’t Sell Your Soul
The moral of this story is that daemon

threads should be used judiciously. They
were designed to be used as servants to
their user thread masters. When no
more user threads exist, daemon
threads lose their reason for living and
the Java runtime steps in and mercifully
ends their benign existence.

AUTHOR BIO
Tony LaPaso is a Java

application specialist and
a Sun-certified Java

programmer working for
Greenbrier & Russel, Inc.
(www.gr.com), in Phoenix,

Arizona. His particular
area of interest is

distributed application
development using RMI,
EJBs, servlets and JSPs.
Tony holds a master’s

degree in computer
science from Arizona

State University.

Beware the Daemons

33MARCH 2000

Java COM

Optimize it
www.optimizeit.com

Java COM

34 MARCH 2000

Because the life of a daemon thread
can be a precarious one, you should be
careful with the sort of tasks you assign
to them. A somewhat contrived yet
illustrative example of their perils is a
daemon thread dedicated to opening a
log file, appending to it, then closing

the log file at a predetermined interval.
When the Java runtime determines
that all user threads have ended, it will
quickly kill the daemon logging thread,
possibly resulting in an inconsistent
log file. To avoid this it’s best to struc-
ture your code so that any work as-

signed to a daemon thread will be
completed before all the user threads
die. So don’t give in to temptation – be
careful using daemon threads...and
behave yourself.

D A E M O N T H R E A D S

tony@absoluteJava.com

SYS-CON
www.sys-con.com

1: import java.awt.*;
2: import java.awt.event.*;
3:
4: public class Tester {
5: public static void

main(String[] args) {
6: Frame f = new Frame();
7:
8: f.addWindowListener(new

WindowAdapter() {
9: public void windowClos-

ing(WindowEvent evt) {
10: System.exit(0);
11: }
12: });
13:
14: f.setBounds(30, 30, 400,

400);
15: f.setVisible(true);
16: }
17: }

1: public class Tester {
2: public static void

main(String[] args) {
3: Thread t1 = new Thread() {

4: public void run() {
5: // Fire off a new

thread.
6: Thread t2 = new

Thread() {
7: public void run()

{
8: while(true)
9: System.out.println("Pleased to

meet you.");
10: }
11: }; // end of t2
12:
13: t2.start();
14: }
15: }; // end of t1
17:
18: // t1.setDaemon(true);
19: t1.start();
20:
21: for(int i = 0; i < 50;

++i)
22: System.out.println("Hope you

guess my name.");
23:
24: System.out.println("Main

thread is about to end.");
25: } // main()
26: } // Tester

1: import java.awt.*;
2:
3: public class Tester {
4: public static void

main(String[] args) {
5: Thread t1 = new Thread() {
6: public void run() {
7: Frame f = new

Frame();
8: f.setBounds(30, 30,

400, 400);
9: f.setVisible(true);

10: }
11: }; // end of t1
12:
13: t1.setDaemon(true);
14: t1.start();
15:
16: try { Thread.sleep(5000);

}
17: catch(InterruptedException

e) {}
18: } // main()
19: } // Tester

Listing 3

Listing 2

Listing 1

35MARCH 2000

Java COM

American
Cybernetics

www.multiedit.com

S Y S - C O N R A D I O

Q:
A:

Q:
A:

Q:
A:
Q:
A:

Q:
A:

Q:
A:

Q:
A:

Q:
A:

JDJ: What has Flashline been up to
since JavaOne?
Stack: We’ve been enhancing our market-
place and still offer several hundred soft-
ware components for resale, primarily
JavaBeans. Now we also have some Enter-
prise JavaBeans available. We expect to
add a significant number of those in the
next three months. People can come to
our site, look over the available compo-
nents, pick the ones they want and get
them downloaded directly to their PC.

JDJ: You were one of the good
reference sites for JavaServer pages.
Stack: Yes, we're like a poster child for
JavaServer Pages.

JDJ: And how’s that going?
Stack: Very well. We built the entire site
using JavaServer Pages. It’s a very sophisti-
cated e-commerce site with real-time cred-
it card authorizations and the multiple
back ends. People can enter coupons and
get discounts. The vendors can post their
own products, look at real-time sales
information, get instant registrations from
purchases, instant registrations from
downloads and look at sales charts. They
can do bundling on their own. The
JavaServer Pages’ architecture has been
very flexible for us.

JDJ: Now you’re the man who will
really tell us what’s selling.
Stack: We’ve seen significant growth
quarter to quarter, in excess of 50% a
quarter, so that’s a good sign. I think the
big market is server-side components,
which is still developing. As I said, we
have some Enterprise JavaBeans now.
We’ll probably quintuple that number in
the next 60 days. I think the server-side
market, if you look at the user interface
market, is probably just a fraction of what
the server-side market is going to be,
because frankly, how many drop-down
boxes do you need?

JDJ: Can a normal developer come
along and submit a bean for you to
distribute?
Stack: We have two excellent programs
specifically targeted for developers that
aren’t quite developing commercial quality,
off-the-shelf components. We have a com-
ponents-by-design service. We have about
1,200 developers registered for that, and
people who are looking for specific compo-
nents can come in and post requests, and
at that point it kind of functions like a cross
between natch.com and eBay dating for
developers, except you get an auction
model thrown in there. People post

requests including UML diagrams, raw
interface specifications and extremely
detailed RFPs. And then an e-mail goes out
to the developers in their areas and they
can come in. Then there’s an interactive
question-and-answer time frame where
people can post questions and further
refine the actual deliverable. At some point,
after the questions and answers close, the
products or the requests are tightly defined,
the developers bid on that project and the
requester looks at their qualifications, the
price, the work they’ve done, the feedback
that has come in on their performance in
the past, and selects a winning developer.
It’s an excellent program for somebody
who doesn’t have commercial components
but still wants to do Java development.

JDJ: And who pays for that?
Stack: We currently charge a nominal fee
for the request. It’s $100 per request. Other
than that, it’s a completely free service.

JDJ: The developer doesn’t pay
anything?
Stack: There’s no fee to the developer at all.

JDJ: That’s really nothing for a
finder’s fee, isn’t it?
Stack: The $100 is there to make sure
that people take the quality of the
requests and the quality of what people
are looking for seriously. We also have a
program called BetaBeans, a free third-
party service where developers who don’t
quite have commercial quality compo-
nents can post them on our site and get
them exposed to the thousands of daily
visitors who can then download them for
free and test them out. We have a built-in
feedback mechanism where they can post
requests for enhancements or bug reports

that the developer can respond to and
bring the quality of their components up
to a commercial quality that could then go
into the marketplace. Both of those pro-
grams are really designed to create more
components.

JDJ: How do you, from Flashline’s
point of view, make sure that a
component is up to a commercial
standard?
Stack: We’re in the process right now of
developing certification standards, and
we’re going to proceed on two fronts. The
first one is cross-application server com-
patibility testing, because in surveying our
customers, the number one thing they
wanted to know was that if they bought a
component, it would work on this applica-
tion server, and that application server
wouldn’t have to be wedded or bound to
a particular product. The second aspect of

the certification is more along the lines of
what you’re asking about. It’s a certifica-
tion program where we’ll go into the com-
ponent and validate that it meets certain
minimum documentation standards. Part
of that documentation will be perfor-
mance testing metrics and UML diagrams
to document that the component is of
commercial quality. What we’re not going
to do in the near term is actually say this
is good or this is bad. That’s a pretty sub-
jective area that, at least for now, we’re
going to stay out of. But we’ll guarantee
that it has a certain minimum level of doc-
umentation and will run on X number of
applications.

JDJ: Can we go to www.flashline.com
for more information about every-
thing you’ve just said today?
Stack: Yes. There’s one more thing we
announced today. It’s an XML version of
Javadoc called JavaDox. If you’ve ever used
Javadoc, you know it spins out a large
number of little files in an HTML format.
We’ve modified the Javadoc programmer,
actually enhanced it, with a doclet that
spins out a single XML file for the Javadoc
communication. This vastly improves the
utility of Javadoc because you have a sin-
gle file that’s much more portable because
it’s a single file. It’s searchable because it’s
in XML, and you can use stylesheets to re-
form it into any particular documentation
standard you need for any purpose. And
that’s free. It’s a Java doclet that’s available
at our site. Actually, it’s at www.component-
registry.com and there’s a JavaDox pro-
gram there.

Interview...
with CHARLES STACK PRESIDENT AND CEO OF FLASHLINE.COM

Java COM

36 MARCH 2000

“I think the big market
is server-side components,

which is still developing.”

37FEBRUARY 2000

Java COM

4th Pass
www.4thpass.com

E J B H O M E

W
hen I started working with Java, I mentioned my
move to a colleague of mine, a Microsoft devotee.
He wasn’t willing to move to the Java platform until

supporting integrated development environments
(IDEs) were as powerful and easy to use as Visual
Basic. Although at the time nothing in the Java world
was as simple or configurable as Visual Basic, I bit the
Java bullet – and the bullet tasted like VisualCafé.Orig-
inally from Symantec Corp.(www.symantec.com) but

now owned by an independent company created by
Warburg, Pincus and BEA Systems, VisualCafé was
the closest Java IDE in the industry that could com-
pare to VB,and it remains on the bleeding edge of sup-
port for new Java technologies. This month in EJB
Home I’ll discuss what to look for in an IDE that sup-
ports EJB, as well as the support for Enterprise Java-
Beans development that has been integrated into the
VisualCafé Enterprise Edition for WebLogic.

Making EJB development easy!

Java COM

38 MARCH 2000

What Does an EJB IDE Look Like?
An IDE is just that – an integrated devel-

opment environment. It’s a seamless, inter-
operable toolset that takes you through
development, debugging and deployment
without leaving the familiar confines of
your development product of choice.
When looking for an IDE for EJB develop-
ment there are four items to keep in mind:
1. An open API to encourage integration

with other EJB tools
2. Support for rapidly developing com-

ponents
3. Easy deployment of these components
4. Robust distributed debugging facilities

to test your components

Essentially, you should never have to leave
your development environment to perform
the necessary steps of coding, deploying and
debugging an enterprise bean.

Other things to look for in an IDE
include integrated source code control
for team development and support for
multiple JDKs for testing your compo-
nents (which won’t be covered here).

Why Use VisualCafé Enterprise Edition
for WebLogic?

A problem that continues to hinder
Java development is the lag between the

introduction of a new technology and the
IDE support for rapid application devel-
opment with the technology. Examples of
this lag have been seen in product sup-
port for each JDK release as well as Swing,
JavaBeans and, most recently, Enterprise
JavaBeans (EJB). As previously men-
tioned, VisualCafé has always been a
front-runner in the race to support new
Java technologies, and its first-generation
effort to integrate support for EJB tech-
nology is no different. Currently, Visual-
Café provides an integrated development
environment for building EJB applica-
tions with the WebLogic Server. While the
product could be expanded to support
other application servers, I doubt this will
come to fruition. The new owners of
VisualCafé will most likely orient this tool
toward an even tighter integration with
the WebLogic Server.

The following sections show how the
VisualCafé Enterprise Edition for WebLog-
ic supports the key features of an EJB IDE,
and why this product combination may
be a good fit for your next EJB effort.

OPEN API
VisualCafé has an open API to allow

vendors to integrate their products and
tools into its environment. The open API
encourages vendors to build tools that
seamlessly interact with VisualCafé to
offer you a more positive experience.
Today numerous EJB products have been
integrated into VisualCafé, including
InLine Software Corporation’s InLine
Standard product (www.inlinesoft-
ware.com), various UML modeling/
code generation plug-ins and third-party-
distributed debugging software. For in-
stance, Inline’s UML Bridge product per-
forms real-time code generation and
reverse engineering between Rational
Rose models and VisualCafé’s code editor.

While many application servers have
proprietary development environments
integrated closely with their server, Visual-

Café and WebLogic have stood by their best-
of-breed approach toward tool integration.

EJB CODE GENERATION
VisualCafé for WebLogic offers two pro-

ject templates for EJB component devel-
opment (see Figure 1). One is an empty EJB
project into which you can import existing
EJB components, while the second is for
developing new EJB components in rapid
fashion utilizing code generation.

The enterprise bean for the WebLogic
project template actually consists of two
projects: a server project for the enter-
prise bean component and a client pro-
ject containing a generated test client for
the bean. The template prompts you to
use the enterprise bean for WebLogic Wiz-
ard to enter information about the enter-
prise bean you wish to create. Afterwards,
the wizard generates the appropriate EJB
classes and VisualCafé XML descriptor for
your component. (Note: The XML de-
scriptor is not the EJB 1.1 format, but a
proprietary format for internal use only.)
If you choose to create a session bean, the
remote and home interfaces would be
generated as well as a stubbed skeleton of
the enterprise bean. Choosing to create
an entity bean will generate these classes,
plus the primary key class for the bean.

Code generation of your beans reduces
errors in coding your component classes
to the EJB specification and speeds devel-
opment through the automation of mun-
dane coding. Likewise, a generated test
client facilitates the testing process of your
EJB component, allowing you to focus
your efforts on developing business com-
ponents – not the harnesses that test them!

DEPLOYMENT OF EJB COMPONENTS
VisualCafé for WebLogic allows you to

configure an enterprise bean, deploy it
to a WebLogic Server and start the server
without leaving the VisualCafé environ-
ment. It even supports hot deploy capa-
bilities into a running WebLogic server. FIGURE 1 Project templates for EJB development

WRITTEN BY
JASON WESTRA

VisualCafé Enterprise Edition for WebLogic

39MARCH 2000

Java COM

Flashline
www.flashline.com

Java COM

40 MARCH 2000

The auto-deploy process is as follows:
upon selecting Configure Bean Descrip-
tor (see Figure 2), VisualCafé configures
an XML descriptor to hold deployment
descriptor information in a portable
fashion. This XML descriptor is used by
VisualCafé’s configuration tool to create
a serialized deployment descriptor for
WebLogic and to generate the EJB con-
tainer classes needed by WebLogic to
support the enterprise bean.

With the container classes and serial-
ized descriptor generated, you can deploy
the bean to the server from within Visual-
Café. Choosing Deliver Enterprise Bean to
WebLogic Server from the Project menu
will JAR the necessary files and add the
JAR file to the weblogic.properties file,
thereby deploying the bean to the server.

Start WebLogic Server and Shutdown
WebLogic Server manage the WebLogic
Server without the need for the WebLog-
ic Console or command-line start-up
scripts, or even the need to double-click
a shortcut to launch it. The deployment
process never forces you to leave the
VisualCafé’ environment.

DISTRIBUTED DEBUGGING
Most early adopters of distributed Java

and EJB can tell endless fireside stories
about the thousands of printlines they
had to code in order to solve the simplest
of coding errors. Now, with VisualCafé,
you can say good-bye to printlines! Visu-
alCafé has advanced support for debug-
ging distributed objects, including enter-
prise beans in the WebLogic Server.

Distributed debugging increases your
efficiency by allowing you to step
through code in a running EJB contain-
er as if the code executed locally on the
same virtual machine as the VisualCafé’s
client program. VisualCafé displays all
debugging information from a single
console for easy tracking of application
statistics during execution.

• • •
As you’ve seen, the VisualCafé Enter-

prise Edition for WebLogic has four qual-
ities important in an IDE for developing
EJB applications. Despite its new product
features, however, it’s not without faults,
so let’s take a look at some areas where it
can be improved.

Improving VisualCafé for WebLogic
The first thing I noticed while using

the Enterprise Edition for WebLogic was
that the stability of VisualCafé is still
questionable. Ever since I started work-
ing with the product, it has had prob-
lems with crashing at the most inoppor-
tune times. I call a certain type of Visual-
Café crash a ghost shutdown. This is
when VisualCafé eats a ton of CPU on

your machine, then disappears without
a trace! Because VisualCafé allows you to
plug in different virtual machines, I
always ensure that my compiler, client
VM and server VM all match the JDK
version. Read the Readme file for infor-
mation on your development environ-
ment before wasting time trying to
resolve a known incompatibility.

Second, VisualCafé only allows EJB
component generation through the
enterprise bean for WebLogic Wizard
after creating a new project template.
There’s no way to go to the wizard from
an existing project, and a new server
project per bean results in an explosion
of VisualCafé projects to manage
(remember – it actually creates two per
bean: a server and a client project). I
believe VisualCafé forces you to create a
server project per bean because it made
it easier for them to auto-deploy the
bean’s JAR file to the server. When the
product becomes EJB 1.1 compliant, it’ll
have to support deploying multiple
beans in a single JAR, but in the near
term this is an inconvenience.

Third, when creating a new enterprise
bean with the wizard, if you decide to
change the name of any bean classes,
you’ll have major headaches finding all of
the references to the old name that were
generated by VisualCafé. For instance,
changing the home interface name will
force you to update the bean’s XML
descriptor manually. For those of you
accustomed to VisualCafé’s automatic
change notification, this will be a sore spot,
especially if you’re new to EJB and not sure
where to make the changes yourself.

Fourth, in release 3.1 a number of dis-
tributed debugging limitations still exist,
especially around the Java 2 pluggable
VM. For instance, some debugging fea-
tures are disabled because VisualCafé
doesn’t support the functionality. Also,

you can’t define an application project
that automatically executes remotely for
VisualCafé’s pluggable Java 2 VM. To do
so you must manually transport files to
the remote machine, start the remote
process, attach to it and debug. This is a
problem that needs to be addressed
since many EJB developers are looking to
use the JDK 1.2 and J2EE APIs, and con-
form to the latest EJB specification (1.1).

Last, VisualCafé Enterprise Edition for
WebLogic is a memory hog! You’ll experi-
ence slow performance from running
VisualCafé and WebLogic Server simulta-
neously on your development machine.
For development hardware I recommend
at least a Pentium 450 MHz with 128MB
RAM.

Conclusion
The widespread adoption of Enter-

prise JavaBeans as a server-side compo-
nent model has led to the demand for
advanced EJB development and deploy-
ment tools. VisualCafé Enterprise Edi-
tion for WebLogic met the demand with
a powerful set of functionality focused
on making EJB development easy. It has:
• An open API for customizing your

environment
• Code generation wizards to speed

development of your EJB components
• An auto-deploy feature that shelters

you from the nuances of deploying
components to the WebLogic Server

• Sophisticated, single-view debugging
of distributed EJB components

Despite some growing pains, the
VisualCafé Enterprise Edition for
WebLogic is a good start for your team if
WebLogic is your application server of
choice.

AUTHOR BIO
Jason Westra is the CTO

of Verge Technologies
Group, Inc., a Java

consulting firm
specializing in e-business
solutions with Enterprise

JavaBeans.. westra@sys-con.com

E J B H O M E

FIGURE 2 Integrated deployment of EJB components

41MARCH 2000

Java COM

Elixir
www.elixirtech.com

Picking the Right Development Tool

WRITTEN BY
SAM WATTS

IMS uses JClass Components to build front end to testing system

Java COM

42 MARCH 2000

JClass LiveTable from KL Group
proved to be the ideal solution for build-
ing an intuitive and dynamic graphical
user interface for the Vanguard product
family from Integrated Measurement
Systems Inc., a global leader in the devel-
opment of engineering testing systems.

Engineers involved in device testing
know that intuition and on-the-fly inter-
pretations have significant impact on
device-testing sequences. The engineer’s
next step is often difficult to predict as it
may depend on a real-time interpreta-
tion of the results produced by the
immediately preceding test. As such, any
system that’s designed for use in these
environments must be highly dynamic,
allowing for seamless and interactive
information flow between the device
and the engineer. Flexibility, responsive-
ness and ease of use in the software
interface help to ensure that fast, accu-
rate and effective testing takes place.

IMS, based in Beaverton, Oregon, is
well versed in the challenges posed by
such a dynamic environment. IMS has
developed Vanguard, an industry-lead-
ing family of hardware and software sys-
tems dedicated to the verification, char-
acterization and failure analysis of com-
plex, high-speed digital integrated cir-
cuits (ICs). By accelerating information
exchange between the device and the
engineer, Vanguard significantly increas-
es engineering productivity and reduces
the time required to get devices into pro-
duction. For IMS customers these con-
densed testing phases translate into
faster time to market and a powerful
competitive advantage.

Underlying IMS’s success in this field
is a solid understanding of the way engi-
neers think and work. Recognizing “the
real-time analysis going on inside the
engineer’s mind,” IMS focused on mak-
ing Vanguard as intuitive, fast and

responsive as possible. Vanguard’s Java-
based software architecture, together
with the use of JClass Java components
from KL Group, played a key role in real-
izing these goals. The graphical user
interface had to be easy to read – and
user-friendly – and allow engineers to
set up and execute individual tests and
test sequences quickly and easily.

Bob Vistica, senior software engineer
at IMS and project lead on Vanguard’s
GUI development, spoke about some of
the challenges he faced in developing
the interface. IMS’s dedicated GUI devel-
opers were assigned to another project,
leaving Vistica with limited specialized
expertise for creating the graphical front

FIGURE 1 System configuration screen

43MARCH 2000

Java COM

Evergreen
www.evergreen.com

end to the IC tester. With neither the
time nor the developer resources to
build GUI components in-house, Vistica
looked to vendors of JavaBeans for
ready-made, reliable GUI functionality,
eventually turning to the JClass family of
JavaBeans from KL Group.

“JClass was the only suite of compo-
nents that offered the breadth and
depth of functionality we needed. Other
products just didn’t come close to the
feature set available in JClass.”

IMS needed to create a largely table-
based interface to display test results
and to enable easy input of new data by
users of the system. JClass LiveTable
offered several capabilities that were key
to the success of the project. Scalability
was paramount, as Vanguard’s tables
would need to accommodate large
quantities of data. Capable of managing
tables of up to 2 billion columns by 2 bil-
lion rows of data, JClass LiveTable clear-
ly presented no limitations in this
regard. Effective data management was
also important: tables would be popu-
lated with data from a variety of external
data sources and had to permit live user
interaction and real-time updating.

“With its robust data connectivity,
LiveTable met our complex data
requirements with ease,” said Vistica.
“We needed a solution that allowed for
real-time user input, and that could
handle large amounts of information.”

IMS was able to prototype many of
the Vanguard windows quickly using
LiveTable. In addition, the move from
prototype to the real software produced
little throwaway code. Vanguard cur-
rently features 15 table-based windows
built using JClass LiveTable, and provid-
ing a wide range of functionality:
• The system configuration screen

illustrates revisions and calibrations
(see Figure 1).

• The device screen lists all device pins
and allows engineers to easily rename
pins in a group (see Figure 2).

• The levels screen provides an easy
means of setting and resetting values,
giving engineers the ability to modify
their tests on the fly (see Figure 3).

• Vanguard’s timing screen takes advan-
tage of LiveTable’s flexible rendering
model to show an actual logic diagram
within a table and depicts what’s hap-
pening through each cycle of the test
(see Figure 4).

• At 1 million rows long, Vanguard’s pat-
tern screen, which displays every test
sequence and acquired data, benefit-
ed greatly from LiveTable’s scalability
(see Figure 5).

The benefits of using JClass LiveTable
weren’t limited to optimizing Vanguard’s
interface functionality. From a produc-
tivity standpoint, Vistica points out that
by using prebuilt components, IMS

slashed two to three man-years of work
from their GUI development cycle.

“The time and money savings were
extremely significant: for a minimal ini-
tial investment of a couple thousand
dollars, we saved close to $300K in
developer costs. Building this function-
ality in-house would have been prohibi-
tive. With JClass we knew we were get-
ting reliable, well-tested functionality
we could count on. The return on invest-
ment was clear,” said Vistica.

Today IMS is planning to extend its use
of JClass for future releases of Vanguard.
Work is underway to create new windows
that take fuller advantage of JClass
LiveTable’s powerful rendering model to
add new functionality to the Vanguard
interface. In addition, IMS is looking at
the wide range of charting and graphing
capabilities available with JClass Chart for
possible integration into future projects.

“Our experiences with KL Group have
been positive from day one,” said Vistica.
“The products are easy to use and extreme-
ly well documented. As such, we’ve had lit-
tle need for their support, but the few times
we’ve called on them, the responses have
been timely and very helpful.”

AUTHOR BIO
Sam Watts is studying computer science at the University of
Waterloo, Ontario. He specializes in Java development.

FIGURE 5 Pattern screen

Java COM

44 MARCH 2000

FIGURE 2 Device screen FIGURE 3 Levels screen

FIGURE 4 Timing screen

sgwwatts@undergrad.math.uwaterloo.ca

45MARCH 2000

Java COM

Fiorano
www.fiorano.com

WRITTEN BY
JON SIEGEL

There’s a wide variety of options for invocation and notification semantics

T
he recent issuance of an RFP for “Unreliable
Multicast” in CORBA got me thinking about
the many network semantics available in a
combined CORBA/Java environment.There are
at least five already, not counting Unreliable

Multicast: Java RMI invocations; CORBA synchro-
nous invocations; CORBA asynchronous and mes-
saging-mode invocations; one-way notifications
using the CORBA event and notification services;
and the Java Messaging Service (JMS). In this col-

umn I’ll review the basic characteristics of these
services side by side. I’m not planning to rate
them as “better” or “worse” on any scale – they’re
more different than better or worse, and you
should choose among them based on the require-
ments of a particular application. The discussion
will be confined to invocation semantics. While
there are a lot of interesting contrasts between
object activation semantics, I’ll save that topic for
a separate column.

C O R B A C O R N E R

Java RMI Invocations
Java RMI extends your client applica-

tions’ reach, allowing them to invoke a
subset of your Java objects remotely
over the network. Only objects that
extend java.rmi.Remote (either directly
or indirectly) may be invoked via RMI,
but local and remote invocations take
the same form. In addition, methods
must include either java.rmi.RemoteEx-
ception or one of its superclasses, such
as java.io.IOException. Remember, re-
mote invocations can fail in more ways
than local invocations, so it’s critical to
catch both system and application-spe-
cific exceptions when you return from a
call.

In a Java RMI invocation there is one
sender and one receiver, and the sender
selects the receiver. The invocation is
synchronous: the client blocks the invo-
cation call, at least on the calling thread,
until the response comes back from the
remote object (or some error condition
times out). The network transport is
based on socket connections, with a fall-
back to HTTP’s POST command that can
penetrate through firewalls under some
circumstances. There’s only one quality
of service (QoS), the default; you can’t
specify priority or time-out values for an
invocation.

If you set your RMI compiler to all
defaults, your RMI objects are available
only from Java clients. However, if you
set your flags for RMI/IDL, the compiler
will generate CORBA IIOP network
interfaces for your object, which will
have a CORBA object reference. It’ll also
output the IDL corresponding to your
Java object, allowing it to be invoked by
CORBA clients (which may include
CORBA objects acting as clients for part
of their function) in the various support-
ed programming languages.

Synchronous CORBA Invocations
This is what you get with current (2.3

and earlier) implementations of CORBA if
you restrict yourself to the static invoca-
tion interface – that is, compiled IDL
invoking via the client stubs. If you code
to the dynamic invocation interface (DII),
an interpreted version of every IDL inter-
face that all ORBs are required to support,
you have a deferred synchronous option.
I won’t devote space to it here because the
new CORBA asynchronous method invo-
cation provides a better alternative for
most programming situations.

All CORBA objects are accessible
either locally or remotely from any
CORBA application that can reach them
over the network, so in this respect the
CORBA and Java RMI invocations are
the same. There are at least two differ-
ences:
1. Certain CORBA invocations – in par-

ticular, ones with a void return value
and no out or inout parameters – may
be declared ONEWAY in their IDL. For
these, control returns to the calling
client right away, while the ORB
makes a “best effort” attempt to
invoke the remote object.

2. CORBA is usable from many pro-
gramming languages, with standard
mappings now defined for Java, C,
C++, Smalltalk, COBOL, Ada, Lisp,
Python and IDLscript, and nonstan-
dardized but nevertheless useful
mappings available for Objective C,
Eiffel and other languages. Interfaces
are written in OMG IDL rather than in
a programming language; this unifies
the multilanguage environment but
means you can’t code strictly in a sin-
gle language as you can with Java
RMI. At the very least you have to
learn OMG IDL. I may be biased, but I
think IDL is a very elegant and trans-

parent way of defining interfaces, and
compilers automatically generate
client and server-side mappings for
your programming language.

The mandatory protocol IIOP guaran-
tees interoperability, while a flexible
architecture allows a network to support
multiple protocols. For CORBA 2.2 and
prior versions there’s no client-accessi-
ble API for protocol selection – or, in
fact, for any network characteristic.
Instead, you indicate your desired or
preferred protocol in a configuration file
or command-line argument at client
and server start-up. As with Java, there’s
only one quality of service at this level,
but this changes in CORBA 3.

CORBA 3 Invocation Options
The CORBA Messaging Specification, a

part of CORBA 3, adds capabilities in two
main areas: asynchronous method invoca-
tion and quality-of-service control, includ-
ing a provision for CORBA routers that
changes the network into a reliable trans-
port. This is a very elegantly architected
specification with many capabilities, so
the treatment here may end up more like a
list of features than a description.

The specification defines two models:
a programming model and a communi-
cations model.

The programming model (Figure 1)
affects only client-side interfaces. It first
divides invocation space into synchro-
nous and asynchronous. If you choose
the former, you can still pick between
normal invocation and the ONEWAY
form mentioned earlier. If you choose
the latter, you pick between callback
and polling result return. Each has a dif-
ferent invocation API, but all are gener-
ated from your original CORBA 2-format
IDL file. To make a callback invocation,

Java COM

46 MARCH 2000

Comparing Network Semantics in CORBA and Java

47MARCH 2000

Java COM

Software AG
www.softwareag.com

program and instantiate a callback
object and insert its object reference as
the first argument in your asynchronous
call, which immediately returns control
to your client. When the invocation
completes, your callback object is called
with the results. When you make a
polling-mode invocation, you receive a
CORBA valuetype as the return. You poll
the valuetype to find out if your results
are back; when it tells you they are, you
invoke additional operations on it to
retrieve your results.

The communications model defines
CORBA routers. Each router is basically
an ORB that accepts CORBA invoca-
tions, stores them and forwards them
onward. Information about router loca-
tions near the server is contained in the
object reference of the target; client
ORBs may also be configured to know
the location of routers near them.
Routers may have persistent storage,
enabling reliable network transport of
CORBA requests and replies. (Network
transmission becomes transactional,
the way the best message-oriented mid-
dleware works.)

The specification goes further to
define an extensive set of QoS parame-
ters and levels, including time-outs for
invocation, return or round-trip; prior-
ity levels; ordering (temporal, priority
or deadline); and routing (none, for-
ward or store_and_forward). Even
though QoS is defined in the messaging
specification along with asynchronous
invocation semantics, its settings apply
(where this make sense) to synchro-
nous as well as asynchronous invoca-
tions.

By selecting various combinations of
the programming model, communica-
tions model and QoS settings, you can
vary your invocation semantics across a
wide spectrum. At the simplest level you
can specify basic synchronous or asyn-
chronous invocation; at the most elabo-
rate level you can make CORBA invoca-
tions across a network transport as
robust and reliable as message-oriented
middleware (MOM). Another setting
allows time-independent invocations,
allowing you to stage CORBA invoca-
tions to a router on your laptop while
offline and having them automatically
upload to the network and execute on
the server the next time you connect up.
(In fact, the time-independent protocol
supports disconnected operation at
both client and server ends!)

Real-time CORBA defines additional
network QoS control. I won’t give details
here since space is short and real time is
a specialized software area, but I will
point out that it defines priority-banded
connections, nonmultiplexed connec-

tions between a single client and server,
and even client- and object-negotiated
protocol selection. If you’re writing a
distributed real-time application, check
this out.

CORBA Event Service
Java RMI and CORBA invocations

invoke application-specific methods on
objects written specifically for that
object’s interfaces in a one-to-one
semantic where the invoker selects the
target. Now let’s turn to distributed
event and eventlike services that typi-
cally invoke general, service-defined
interfaces (perhaps carrying an applica-
tion-specific payload stuffed into a
generic type such as an any) and allow
multicast or multicastlike semantics in
which event suppliers and consumers
subscribe to an intervening channel and
may not be aware of exactly who each
other is. The biggest difference between
event and messaging services on the
one hand and invocations on the other
is that invocations use an object-orient-
ed–type system to narrow the available
operations on an object and the para-
meters in each operation, while event
and messaging services do not. While
this leaves messaging inherently more
flexible, it makes invocation the more
reliable choice. In large-scale systems I
like to use invocation wherever I can,
but move to messaging when I have to.

The CORBA Event Service, in its most
widely used form, provides channels to
which event suppliers and consumers
connect. Push and pull semantics are
supported at both supplier and con-
sumer ends of the channel. (At the sup-
plier end a push supplier calls a channel
object while a pull supplier provides a
callback object that’s polled periodical-
ly by the channel for events. At the con-
sumer end a push consumer provides a
callback object to which the channel
sends events as soon as they arrive,
while a pull consumer polls the channel
object periodically to see if any events
have arrived.) Because event delivery
interfaces are defined in OMG IDL, this

is a distributed service intended to serve
distributed (perhaps widely distributed)
applications; you probably wouldn’t
want to use typical implementations as
the basis for your desktop GUI. Event
payload is an IDL any, unless you define
an application-specific Typed Event,
which then requires a specialized ver-
sion of the service. QoS is specifically
not defined, even though many service
items might benefit – how timely events
are delivered to push consumers, length
of queue and length of time events are
held on queue for pull consumers, and
so forth. For this, OMG members later
defined the Notification Service, which
we’ll look at next.

CORBA Notification Service
Defined by the Telecommunications

Domain Task Force, the CORBA Notifi-
cation Service adds structured events,
typing and filtering, and QoS control to
the Event Service, which it inherits in its
entirety. (Note: This inheritance means
only that Notification Service imple-
mentations support the entire Event
Service interface set, not that they inher-
it a previous implementation of the
Event Service. More likely, Notification
Service implementations will provide
Event Service functionality using code
in their own implementation.)

The service defines a structured event
that supports definition and application
of standard filters using a constraint lan-
guage. Filtering can substantially lessen
the load of events on a network or a
client of the service. Channels and chan-
nel maintenance are also defined. A set
of discovery interfaces allows suppliers
to temporarily stop supplying, or con-
sumers to stop polling, channels that
have no consumers or suppliers. QoS
settings are also provided for delivery
reliability, priority, various time-outs
and other aspects of event delivery.

Since its definition a few years ago,
the Notification Service has proved pop-
ular. Implementations are available on
the software market, and its interfaces
have been inherited and used in a num-
ber of subsequent OMG specifications,
including the CORBA Component
Model.

Java Messaging Service
The final service we’ll review is a kind

of hybrid. A number of third-party ven-
dors market messaging services that
provide reliable network message
exchange around a central dispatcher to
which all clients connect. Referred to
either as Enterprise messaging systems or
message-oriented middleware, these

C O R B A C O R N E R

Java COM

48 MARCH 2000

Invocation

Synchronous

Normal Oneway Callback Polling

Asynchronous

FIGURE 1 Programming model

products vary significantly in the num-
ber and type of services they build on a
common peer-to-peer messaging foun-
dation. The (JMS) defines a standard API
that these vendors can layer on top of
their services, allowing them to service
the Java runtime environment in a way
that is more or less interchangeable,
depending on how much the services of
one vary from those of another.

Messaging-based applications may
be composed of any number of clients
(of the messaging service, that is) who
interact by exchanging messages.
Although messages aren’t invocations,
JMS clients (and CORBA objects) may be
programmed to take certain actions
when they receive certain messages, and
(according to the JMS 1.0.2 specifica-
tion) a future version of EJB will include
a bean that’s automatically invoked by a
JMS message.

Semantics vary, with some messaging
services supporting point-to-point
semantics, while others provide multi-
castlike anonymous multipoint delivery
using a queuing algorithm. JMS sup-
ports both, but not interchangeably. The
JMS specification points out that you
won’t be able to port code from one type
of service to the other without substan-
tial changes. Finally, remember that JMS
works only in a Java environment.

Conclusions
Before I compare the various invoca-

tion modes and services, I want to give a
few more details about the OMG specifi-
cation effort currently underway to
define unreliable multicast invocation
semantics. Unreliable doesn’t mean that
the multicast service sometimes shows
up late for work and occasionally on
Monday doesn’t show up at all. It signi-
fies that the invocation semantics are
“best effort,” which means that message
delivery isn’t guaranteed, and message
loss won’t be detected by the transport
infrastructure. (Packet loss and reorder-
ing on the other hand may be detected
and corrected.) Intended primarily as a
more efficient transport for the event
and notification services, its underlying
transport will be IP multicast rather than
the connection-oriented TCP, and the
IOR (Interoperable Object Reference)
will specify a multicast group rather than
a specific CORBA object as its target. The
service also asks for definitions of object
groups and methods to maintain group
membership in order to support the
actual multicast invocations. This will
enable an event or notification service to
scale to a far larger installation than cur-
rently, where each transmission of an
event to a consumer is a separate CORBA

invocation. Although this may not be a
factor for a small number of consumers
and small payloads, many installations
have large numbers of consumers (I’m
thinking primarily of telecommunica-
tions and other service networks here) or
large payloads, such as graphics images.

In this survey we’ve seen that distrib-
uted applications in Java and CORBA are
rapidly becoming quite capable citizens
of our new networked world and that a
wide variety of options are available for
both invocation and notification seman-
tics. Both have synchronous invocations,
and both take advantage of reliable net-
work transport, although CORBA does
this for invocations while Java does it for
messaging. CORBA has an edge in dis-
tributed event and notification delivery
and works in a multilanguage environ-
ment. Of course, Java programmers can
contribute objects to the CORBA envi-
ronment by using RMI/IDL, which allows
you to generate IDL interfaces automati-
cally for Java objects that speak IIOP over
the network while programming in pure
Java. There’s no corresponding magic on
the client side, however, so you’ll have to
code your Java clients to the IDL Java lan-
guage mapping to make invocations of
CORBA objects on your network.

AUTHOR BIO
Jon Siegel, director of
technology transfer for the
Object Management
Group, has extensive
experience in distributed
computing, OO software
development and
geophysical computing.
He holds a Ph.D. from
Boston University.siegel@omg.org

49MARCH 2000

Java COM

QuickStream
new

www.quickstream.com

JFCSuite is a collection of visual beans
based on JFC and complementing it. It fills
in missing pieces in the JDK/JFC GUI
libraries, namely, masked (number-only,
all upper case, etc.) entry fields, date/cal-
endar controls, various extensions (sort-
ing) on JTable and more. All components
support the Java Look and Feel (JLF) and
are 100% Pure Java certified. Although the
licensing is per developer, there are no
runtime license fees when the library is
used in commercial products. The prod-
uct is also available with enterprise (pri-
ority) support bundled, which may be a
good choice if the components are
relied on heavily in your UI. Detailed
pricing information for subscription,
source code and other options are avail-
able at www.protoview.com/order/dir-
ect.asp.

The product is available in a conve-
nient InstallShield archive format for
Winx and other environments. Before
installing the product, you may want to
have a quick glance at the “Before You
Begin” chapter of the documentation
that explains which JAR files belong to
which version of JFC (pv* is for Java 1.x
with JFC, pvx* for Java 2). To try the
product, I installed the Java 2 beans into
the visual builder palette (see Figure 1)
of JBuilder 3. The one thing I thought
was missing when I installed the beans
to the palette is a “product” JAR file
(containing all beans supplied) to save
some clicks when adding the beans to
the palette. All icons supplied by the
pv*.jar files showed up right away in
JBuilder, but only several of the pvx*.jar
icons did. But after I restarted JBuilder,
the palette contained all the right icons.

The beans provided customizer dialogs
(see Figure 2) where appropriate,
although some of them felt sluggish
when I saved changes.

The documentation is extensive and well
prepared. It links directly to the samples,
describes how to add the beans to the
palettes of different Java development envi-
ronments (including JBuilder) and contains
suggestions on how to deploy products with
the library (including information on Java
Plugin). It also describes different problems
encountered using the visual builder tools
and workarounds in the “Design Time Notes”
section. Some of the functionality isn’t avail-
able in visual fashion because of the different

limitations of those environments. Other plat-
form-dependent behaviors are also described

in detail in the documentation.

The components provided are well blended
into the JFC framework, providing a wealth of set-
ter/getter methods, listeners, renderers, locale
settings and look-and-feel settings. The compo-
nents can also be tied to each other, providing
even more functionality. A good example of this is
the calendar component described below, which
can be used as a stand-alone or as a drop-down
from another entry field for date selections.

JFCDataCalendar
JFCDataCalendar (see Figure 3) is a calendar

bean that allows a date or even date ranges to
be selected using a “real-life” days-of-the-
month display.

http://gliptak.homepage.com/

AUTHOR BIO
Gabor Liptak is an independent consultant with more
than 10 years of industry experience. He is currently

an architect of a Java e-commerce project.

Protoview Development Corp.
2540 Route 130
Cranbury, NJ 08512
Phone: 800.231.8588
www.protoview.com
e-mail: info@protoview.com

Installation Requirements:
JDK versions supported: JDK1.1.5+ (with JFC)

or Java2 (1.2.2+ is preferred)
Platforms:All platforms with support for

the above JDK versions

Pricing: $995 online download

P
R

O
D

U
C

T

R
E

V
I

E
W

P
R

O
D

U
C

T

R
E

V
I

E
W

ProtoView,
JFCSuite, v2.1
Provides components that
are well blended into the
JFC framework

REVIEWED BY GABOR LIPTAK

Java COM

50 MARCH 2000

FIGURE 1 Visual builder palette

FIGURE 2 Customizer

FIGURE 3 JPVCalendar

51MARCH 2000

Java COM

ObjectSwitch
www.objecswitch.com

Java COM

52 MARCH 2000

It can be used as a stand-alone or in conjunction with the JPV-
DatePlus date entry field to provide a drop-down date selector
similar to the one in Quicken. The implementation even provides
methods for manual placement of elements that could behave in
a platform-dependent fashion. As can be seen in Figure 3, the
days can be customized using images.

JFCDataTable
The JFCDataTable (see Figure 4), a drop-in replacement of the JTable

component, adds sorting, printing, keyboard handling and advanced
in-cell editing and formatting. The table component of this package
actually subclasses from JTable, making it a true drop-in replacement.

The API has added convenience methods when compared to
the JTable implementation. A “blended” scroll-and-table con-
trol is provided. Class inherits this from JScrollPane, but also
implements the JTable methods.

JFCDataTree
JFCDataTree (see Figure 5) is again a true drop-in replacement for

JTree, providing drag-and-drop, advanced keyboard handling, sort-
ing, searching, node image customization and additional listeners.

A blended scroll-and-tree control is also available here.

JFCDataExplorer
JFCDataExplorer (see Figure 6) was likely inspired by the Windows

Explorer UI. It ties together a JTree component with a JTable (or other

components) inside a JSplitPane, allowing a display of hierarchical data struc-
tures on its left side and corresponding data on its right side. Please note that
the component used to display the data on the right side, can be changed on
a node-by-node basis, providing unlimited flexibility on a small screen’s real
estate.

Although JTable’s data model can be used, a special data structure is
also supplied, providing a richer information store.

JFCDataInput
JFCDataInput (JPVEdit, its subclasses and related classes; see Figure

7) offers rich data entry/validation beans. Functionality includes vari-
ous masked entry fields (currency, [long] date, numeric, time) and sev-
eral buttons (image, round, spin).

As for the other components above, various UI settings are offered
for colors, fonts, borders, style, UI interaction timings, and so forth.
The entry fields can be connected to the spin button supplied to pro-
vide a more mouse-friendly interface. I found it somewhat curious
that the various masked entry fields aren’t implemented using the JPV-
Mask bean found in the package. Also, the need to have a JPVEdit
superclass does seem to suggest that JFC was not as extensible as one
might wish.

The JFC-style API and the extensive documentation supplied make
the JFCSuite widgets a good choice if your UI needs the functionality
described above.

At press time, ProtoView was scheduled to release version 3.0 to the JFC-
Suite. This version will include a DayView component as well as advanced
n-tier data models for data binding.

P
R

O
D

U
C

T

R
E

V
I

E
W

FIGURE 7 JPVEdit

FIGURE 6 JPVDataExplorerFIGURE 4 JPVTable

FIGURE 5 JPVTree

53MARCH 2000

Java COM

New Atlanta
www.newatlanta.com

54 MARCH 2000

Java COM

Python
Programming

in the

JVM
Increase your

productivity by
putting Python
in your toolbox

J D J F E A T U R E

WRITTEN BY RICK HIGHTOWER

What This Series Is About
This article is Part 2 of a series that discusses the

many languages that compile and/or run on the Java
platform. This is an interactive series. Java Developer’s
Journal invites you to vote for your favorite non-Java
programming language in the JDJ Forum. Your vote will
decide which languages will be covered by the series,
and in what order. The last time I checked, JPython and
NetRexx were neck and neck. NetRexx, though not
mentioned previously, will be covered in the next article.

There are some great languages that I didn’t men-
tion last month, but as I stated, the list wasn’t compre-
hensive – I named less than 10% of all the languages
for the JVM. And received my fair share of “Why didn’t
you mention language X?”

Most of the languages covered by this series are
scripting languages that are dynamic, interpreted and
easy to program. For this article and the ones that follow,
Java will be presented as the system language and the
higher-level language will be presented as the “glue” lan-
guage.Thus you define frameworks, libraries and compo-
nents in Java and glue them together to make applica-
tions. This was described in detail in JDJ, Vol. 5, issue 2.

The series will focus on topics such as other lan-
guages for the JVM; integrating Java with mainstream
scripting languages like Perl and Python; special-pur-
pose languages (rules, etc.); creating JavaServer
Pages (JSP) in JavaScript, Webl and Python; SWIG;
open-source Java initiatives; COM/DCOM from pure
Java; and CORBA to legacy integration.

55MARCH 2000

Java COM

MetaMata
www.metamata.com

Java COM

56 MARCH 2000

J
Python is the 100% Pure Java version of Python and is freely
available – source code and all. An extremely dynamic, object-
oriented language, JPython is in its second major release –
JPython 1.1. Since JPython is the same syntax and language as
Python, I’ll use the terms interchangeably for the rest of this
article.

You’ve heard Java called a dynamic, object-oriented language. Well,
JPython is more dynamic and more object-oriented than Java. In
Python, unlike Java, everything is an object – classes, methods, name-
spaces are objects. Also, Python doesn’t have any primitive types, and it
supports multiple inheritance. In many ways Python is closer to
Smalltalk than to Java – syntactically, however, Python is closer to Java
than to Smalltalk.

This isn’t a case of my-language-can-beat-up-your-language syn-
drome. JPython doesn’t replace Java; it augments it. Java and JPython
have complementary roles – sometimes they overlap.

JPython facilitates the following:
• Embedded scripting language: You can add JPython to your applica-

tion to enable those pesky, demanding end users to extend your appli-
cations through scripts. Thus your end users can extend your applica-
tion to add functionality that only a domain expert could dream of.

• Interactive experimentation: JPython, like many scripting languages,
provides an interactive interpreter. I use this to try out new APIs and
for prototyping. Also, this is a great debugging tool – you can execute
methods in any order, not in the normal sequence. Since the syntax is
close to Java, it’s easy to prototype.

• Rapid application development: Python programs are shorter than the
equivalent Java programs, as I’ll show in the Rosetta stone examples.

Python is a lot easier to learn than Java. A novice programmer can
learn enough Python in half a day (or sometimes in a few hours) to write
effective scripts. In addition to being good for programming-in-the-
small, you can use it for larger programs. Python has advance name-
space management that makes programming-in-the-large feasible –
many scripting languages don’t. For example, Python has packages sim-
ilar to Java’s.

Python’s ease of use is on a par with Visual Basic. Some say Python
even surpasses Visual Basic because the syntax is more consistent and
designed. However, unlike Visual Basic, Python is truly object-oriented.
Others say that Python closely resembles a nonverbose version of Pascal
or C++. The ease-of-use syntax is good, and the dynamic capabilities are
extremely powerful. Put a Python in your toolbox.

Rosetta Stone
For comparison, each JPython sample application will have a corre-

sponding Java implementation. This article covers the following sample
applications.
• A simple GUI application
• A simple statistics application
• Embedding the script into an application (if applicable)
• A simple example parsing text

Before we go into the first example, let’s cover the basics of JPython. If
you’ve installed JPython, please follow along in the interactive interpreter.

A Simple Class
Python has classes. Listing 1 is a sample Python class; the Java equiv-

alent appears in Listing 2. (The remainder of the Listings, through List-
ing 16, can be downloaded at www.javaDevelopersJournal.com.)

Notice that the use of self is similar to the use of this in a Java class –
self is the reference to the instance. The first argument to each method is
a reference to self. Also note that there’s no separate declaration for
member variables, that is, they’re declared when they’re assigned a
value. (You can declare class variables as well as instance variables.) The
_str_method is a special method that acts like the toString method in

Java. Compare the Python Employee class to the roughly equivalent Java
class in Listing 2.

To create an instance of an Employee and print it to the screen you’d
do the following:

print Employee()

The equivalent Java statement would be:

System.out.println(new Employee());

Next we create two instances of Employee called joe and ron, and
print those employees to the console. We print joe, who is ron’s manag-
er, by invoking the getManager method of ron – first in JPython, then in
Java

PYTHON
joe = Employee("Joe", "Batista", 100)

ron = Employee(manager=joe, id=101, lname="Furgeson", fname="Ron")

print ron

print ron.getManager()

JAVA
Employee joe = new Employee("Joe", "Batista", 100, null, 1);

Employee ron = new Employee("Ron", "Furgeson", 101, joe, 1);

System.out.println(ron);

System.out.println(ron.getManager());

As I said, the syntax is similar. One feature that JPython has is named
arguments and default values. Notice that when the ron instance is created,
the arguments are called out of order. If you’ve programmed in Visual Basic
or VBScript, this concept should be familiar. If not, think of it this way: you
can call methods as you normally do with Java, or you can pass name, value
pairs to the method as shown above. This feature can save some coding
effort, not to mention some headaches. Have you ever had several versions
of the same method? And you just wanted to have different default values?
Every default value is another overloaded method. It can get messy.

A good example of using named arguments is the GridBag utility class
that the JPython distribution provides. This utility helps you manage the
infamous GridBagLayout. I’ve created something similar in Java that
used overloaded methods to create GridBag constraints. I was amazed
how short the GridBag utility was in Python. (It’s in the pawt package, if
anyone wants to check it out.)

A Simple GUI
Now that we’ve created a simple class, we’ll create a simple GUI. I

admit that the class and the GUI are nonsensical – the idea is to demon-
strate and compare the language to Java.

If you have JPython installed, let’s pretend that we’re prototyping this GUI.
Fire up the interactive interpreter by typing jpython as the system prompt.
(This assumes that you’ve downloaded, installed and put JPython home
directory on your Path. Follow the install instruction at www.jpython.org.)

Import the JFrame from the javax.swing package.

>>> from javax.swing import JFrame

Create an instance of the frame, set its size to 200 by 200, then make it
visible.

>>> frame = JFrame("My Prototype", visible=1, size=(200,200))

You probably weren’t expecting this to be only one line of code. In
JPython any bean property of a class can be set during the call to the
constructor using named arguments. By bean property I mean a proper-
ty as defined by a getter and a setter method, that is, the bean “design
pattern” for properties.

57MARCH 2000

Java COM

VisiComp
www.visicomp.com

Java COM

58 MARCH 2000

Object
www.object

Design
tdesign.com

59MARCH 2000

Java COM

Java COM

60 MARCH 2000

At this point our frame is pretty boring. A stupid-looking gray box.
Let’s add some components to our stupid-looking gray box. We need to
add some labels, text fields and an okay button. As we develop this GUI
application I’ll point out some of the features of JPython. As it’s a non-
sensical demo, we aren’t going to meet any GUI style guidelines. First we
need to import a few classes from javax.swing.

>>> from javax.swing import JButton, JTextField, JLabel, JPanel

Notice that we didn’t use the * syntax. For example, we could have said
“from javax.swing import * as you’d do in Java. But that would have
imported every class into our namespace – in Python that would be con-
sidered bad style. In Python you can view and manipulate the name-
space. For example, to see all of the variables in the current namespace,
you can do the following:

>>> dir()

['JButton', 'JFrame', 'JLabel', 'JTextField', '__name__', 'frame']

Thus, if we imported *, we’d have a lot of classes in our namespace,
and that would be less than ideal.

First create a pane. (Notice how the frame’s contentPane property is
handled; in Java you’d have to call frame.getContentPane() to get the
contentPane. Bean properties are treated like instance variables.)

>>> pane = JPanel()

>>> frame.contentPane.add(pane)

javax.swing.JPanel[,0,0,0x0,invalid,layout=java.awt.FlowLayout,align-

mentX=null,alignmentY=null,border=,flags=34,maximumSize=,minimum-

Size=,preferredSize=,default

Layout=java.awt.FlowLayout[hgap=5,vgap=5,align=center]]

For this example we’ll use the GridBag utility class that’s provided with
JPython. GridBag makes using GridBagLayout easy. The amazing thing
about GridBag is how few lines of code it took to write it – again, check it
out.

First we import the GridBag helper class, then create an instance of
GridBag and associate it with the Pane. Please follow along in the inter-
active interpreter.

>>> from pawt import GridBag

>>> bag = GridBag(pane)

Now add the first component to the grid bag – a JLabel. This will use
all of the default values of the GridBagConstraints (see Figure 1).

>>> bag.add(JLabel("Name"))

>>> frame.validate()

Now add another JLabel. This time we add the label on the second row
of the grid.

>>> bag.add(JLabel("ID"), gridy=1)

>>> frame.validate()

Now add a text field on the first row in the second column. Then pack
the frame (see Figure 2).

>>> name = JTextField(25)

>>> bag.add(name, gridx=1, weightx=80.0)

>>> frame.pack()

Now add a second text field for the employee ID, this time to the right
on the second row. Then pack the frame (see Figure 3).

>>> id = JTextField(10)

>>> bag.add(id, gridx=1, gridy=1, weightx=80.0)

>>> frame.pack()

As you can see, this isn’t what we want. The text field components are
centered and look quite silly. I forgot to align the text field to the left in
their cells (not really – I forgot on purpose).

Let’s remove the components and add them again with the proper
alignment. Hopefully, you’ll see how useful it is to be able to experiment
with the layout in the interactive interpreter (see Figure 4).

Remove the ID and name.

>>> pane.remove(id)

>>> pane.remove(name)

Now re-add the ID and name with the proper alignment.

>>> bag.add(name, gridx=1, weightx=80.00, anchor='WEST')

>>> bag.add(id, gridx=1, gridy=1, weightx=80.0, anchor='WEST')

>>> frame.pack()

The above demonstrates the interactive, experimental environment.
You can explore cause and effect without the normal recompile, retest
environment.

Bean events are handled easily in JPython. As with bean properties,
JPython adds features to make event handling easier. First, JPython
uses introspection and reflection to make event properties. Event
properties equate to the names of the methods in the event listener
interface for a given method using the event “design pattern” for Java-
Beans.

You can assign an event property a function or method. To demon-
strate this, let’s set up an okay button. When the okay button gets clicked,
this prototype application will print out the employee’s name and ID.

First create and add a button to our GUI (see Figure 5).

>>> okay = JButton("Okay")

>>> bag.add(okay, gridx=1, gridy=2, anchor='CENTER')

>>> frame.pack()

Next create a function. The function prints out the value of the name
and ID text.

>>> def handleOkay(event):

... print "Name " + name.text

FIGURE 1 Simple Form created in the
interactive interpreter

FIGURE 2 Added some more components,
packed the frame and arranged components

FIGURE 3 Added another component….Oops,
made a mistake. Better fix it.

FIGURE 4 Fixed layout. Looks good!

FIGURE 5 Added okay button and event
handler

61MARCH 2000

Java COM

IAM
www.iamx.com

Java COM

62 MARCH 2000

... print "ID " + id.text

...

>>> okay.actionPerformed=handleOkay

Enter some text in the Name and ID field and hit the okay button. This
is a simple session, creating a simple GUI. For those of you who followed
along with JPython, let me know what you think of JPython. I like it and
use it often.

Rosetta Stone GUI
The foregoing was to show the interactive interpreter that comes with

JPython. Now let’s create a GUI based on the one we created above in
both JPython and Java. In subsequent articles we’ll write the same GUI
in NetRexx, JavaScript, BeanShell, and others, enabling you to compare
the JPython example with an example in NetRexx.

Listing 3 shows the employee form that we prototyped in the interac-
tive interpreter. Listing 4 shows the employee form in Java. The Java ver-
sion is 2,139 characters while the JPython version is 1,290 characters;
thus the Java version is 66% larger.

Rosetta Stone Statistics
Just to highlight how well the language can do simple, common

things, we’ll create a simple application that calculates statistics for
house prices in a neighborhood. Thus we’ll create a program that, given
a list of numbers, finds the averages (mean, mode, median) and range.
We’ll list each function’s code and then break it down and describe the
function line by line.

IMPLEMENTING GETRANGE
Since getRange is the easiest, we’ll do it first. Essentially, we want a

function that returns the minimum and maximum values in a list, and
the range of values in the list (see Listing 5).

FIRST TRY IMPLEMENTING GETRANGE
Range iterates through a set of numbers passed to it and calculates the

minimum and maximum values. When it’s done, it returns the min, max
and the range in a tuple.

Let’s break getRange down bit by bit. First getRange declares two vari-
ables called min and max. The min is to hold the minimum value. The
max is to hold the maximum value.

min = 300000000

max = -300000000

The min variable refers to a very large number so that the first item
extracted from the list will be less than the large number and get
assigned to the min value. The max value contains a very negative num-
ber so that the first item that gets extracted will be more than the large
negative value and get assigned to min variable.

Technical Note:
The foregoing example will work only if the numbers passed to it are

in the range of min and max.
A better way to implement this code would have been to use the

following:

from java.lang import Double

or:

from java.lang import Integer

and then:

min = Double.MAX_VALUE

max = Double.MIN_VALUE

or:

min = Integer.MAX_VALUE

max = Integer.MIN_VALUE

This would make the function work well with IntTypes or Double-
Types, but what about LongTypes? Well, there’s a more Python way of
doing things, which will be explained shortly.

Next, to figure the minimum and maximum number, the getRange
function iterates through the nums sequence.

for item in nums:

if (item > max): max = item

if (item < min): min = item

Notice the JPython for loop iterates through a sequence. A sequence is
like a cross between a Java Array and a Java Vector – well, not exactly.

The expression item > max determines if the item’s value is greater
then the value of max. If it is, it’s assigned to the value of the item. This,
so far, is a lot like Java.

When the loop stops iterating the values, the getRange function
returns the min, max and range (max - min) as:

return (min, max, max-min)

This may be odd. Essentially, it appears that we’re returning three values.
Actually, we’re returning a tuple of values. A tuple is an immutable sequence.

Well, that was easy enough. If you read the technical note, you know
this approach has some flaws.

We’re getting a variable called nums. The nums variable is a sequence.
In Python, sequences have intrinsic operations (built-in functions) for
finding the min and max values in a list. Therefore, we should have used
the built-in function.

The Python Way of getRange
This is an improvement of getRange, because it’s a lot shorter and it

can work with all numeric types, longs, floats and doubles at their max-
imum range of precision (see Listing 6).

There’s no more for loop, no more figuring out what the minimum or
maximum variable should be initialized to. The built-in intrinsic func-
tions in Python are very useful. Now this will work with longs, integers
and floats. (Read the technical note under the first implementation for a
description of the getRange problem).

IMPLEMENTING GETMEAN
The getMean function figures out the mean of a sequence of numbers.

It iterates through the list, adds all the values together and stores them in
sum. It then figures the mean by dividing the sum divided by the length
of the sequence of numbers. The getMean sample uses an argument
called sample to determine if this is a sample mean or a population
mean (see Listing 7).

This example shows example use of:
• For loop
• If and else statements
• The built-in function called len

Let’s break down the getMean function step by step.
First create a variable called sum that holds the sum.

sum = 0.0

Then iterate through the nums sequence accumulating the value of
the item x.

63MARCH 2000

Java COM

Youcentric
www.youcentric.com

Java COM

64 MARCH 2000

for x in nums:

sum = sum + x

Next we check to see if this is a sample mean. If it is, we figure the aver-
age by dividing the sum by the number of items in nums less one, else we
divide the sum by the number of items in the nums sequence.

if(sample):

average = sum / (len(nums)-1)

Else it is a population mean

else:

average = sum / len(nums)

Last, we return the average.

return average

The foregoing is not much different from what you’d do in Java. You
could say that it’s very similar.

The Python Way of getMean
There’s another way to calculate the average. It’s quite different from

what you may be used to.
Examine the following code.

def getMean (nums, sample):

sum = reduce(lambda a, b: a+b, nums)

if sample: average = sum / (len(nums)-1)

else: average = sum / len(nums)

return average

This approach uses a built-in function called reduce, which takes two
arguments – a function object and a sequence object. The former is
specified with the lambda keyword, which defines an anonymous func-
tion, that is, a function without a name.

Thus:

lambda a, b: a+b

is equivalent to

def add(a,b):

return a + b

The reduce function applies the function argument to two items in
the sequence argument cumulatively from left to right, which reduces
the sequence to a single value that in our case is a sum.

Thus the foregoing method is equivalent to the former getMean
method, but a lot shorter. There are other built-in functions like reduce
that provide functional programming features to Python.

IMPLEMENTING GETMODE
The getMode function finds the value that repeats the most. (Note:

This isn’t a complete implementation of mode – it would work only with
discrete values.) The first thing this function does is duplicate the
sequence, because it’s going to modify it. Then we iterate through the
items in the nums sequence, and count the numbers occurrences of the
current items (we use the built-in sequence method count). Once we
count an item, we remove it from the duplicated sequence (see Listing
8).

This example shows example use of:
• For loop
• While loop

• If statement
• Built-in intrinsic operation count
• Also uses a nested for loop

Because of space considerations, we won’t cover getMode step by step.

IMPLEMENTING GETMEDIAN
The getMedian function finds the middle-most value once the

sequence is sorted (see Listing 9).
This example shows example use of:

• The modulus operator (%)
• If and else statements
• Built-in intrinsic operation sort

Also because of space considerations we won’t cover the getMedian
function step by step. Let’s highlight some of the getMedian functionali-
ty. First we duplicate the nums sequence. Then we sort the duplicate (the
duplicate is named seq):

seq.sort()

Next we get the length of the sequence and check to see if it’s an even
number with the expression length % 2. (Remember that the modulus
operator – % – returns the remainder, so if length is even, the expression
length % 2 will return a 0.) If the length is even, we calculate the median
by adding the two most central numbers and figuring their average.

length = len(seq)

if ((length % 2) == 0):

index = length / 2

median = (seq[index-1] + seq[index]) /2.0

If the length is odd, we grab the middle value:

else:

index = (length / 2)

median = seq[index]

Last, we return the median.

return median

IMPLEMENTING REPORTSTATISTICS
Last, we want to print out the statistics we collected. The reportStatistics

calls all of the functions; we implement and store their return values in two
dictionaries called averages and ranges. It then puts the two dictionaries in
another dictionary called report. It returns report (see Listing 10).

This example shows example use of:
• getMean, getMode, getRange, getMedian
• Nested dictionaries

Let’s cover the reportStatistics function step by step.
Get the averages – namely, the mean, median and mode. Use the get-

Mean, getMedian and getMode functions that we defined. Note that
“mean”:getMedian defines a key value pair.

averages = {

"mean":getMean(nums,0),

"median":getMedian(nums),

"mode":getMode(nums)

}

Get the range parameters – namely, the min, max and range – from the
getRange function. Use the range[0], range[1] and range[2] items in the
sequence returned from the function getRange. Note that “min”:range[0]
defines a key value pair in the ranges dictionary. Unlike Java, Python has

65MARCH 2000

Java COM

VSI
www.breezexml.com

Java COM

66 MARCH 2000

built-in support for collections. Thus you can specify a dictionary, which
is like a java.util.Hashtable, with a literal.

get range

range = getRange(nums)

put ranges in a dictionary

ranges = {

"min":range[0],

"max":range[1],

"range":range[2]

}

Now define a dictionary called report that contains the averages and
ranges dictionary:

report = {

"averages": averages,

"ranges": ranges

}

Last, let’s return the report dictionary

return report

USING REPORTSTATISTICS
The runReport module uses the reportStatistics to get the report dic-

tionary that it uses to print out the report (see Listing 11).
This example shows example use of:

• The string format operator (%)
• the %f format directive
• Using nested dictionaries
• Using a dictionary with the format operator

The string formatter (%) operator is like the printf function in C except
that the % operator can work with dictionaries of data (see Listing 12).
I’ve used the string formatter to generate Java code. It’s one of my
favorite Python features and really makes text reporting easy.

As you can see, there are a lot of built-in functions and built-in collec-
tion types that make easy tasks easier and hard tasks possible. Now com-
pare this to the Java version of this application in Listing 13. Notice how
much shorter the Python version is.

Rosetta Stone String Parsing
This example will continue where the other one left off. We’ll add read-

ing the house prices from a file. The file will consist of a comma-delim-
ited list of house prices.

For example, the file will contain:

100000,100000,120000,150000,170000,170000,80000,50000

The Python code to read this file in would be as follows:
Open the file.

>>> file = open("data.txt")

Read in the file data.

>>> data = file.read()

Import the split function to parse the data.

>>> from string import split

>>> housePrices = split(data, ",")

For demonstration purposes show that the split function split the data

string into a list of strings.

>>> housePrices

['100000', '100000', '120000', '150000', '170000', '170000',

'80000', '50000\n'

Convert the housePrices list from a list of strings to a list of floating
point values.

>>> housePrices = map(float, housePrices)

Show that the list is now a list of floating point values.

>>> housePrices

[100000.0, 100000.0, 120000.0, 150000.0, 170000.0, 170000.0,

80000.0, 50000.0]

Listing 14 is the listing for the foregoing prototype.
Compare the JPython listing for runReport2 (Listing 14) and the Java

listing (Listing 15) for runReport2. As before, the JPython version is much
shorter.

Rosetta Stone Embedding JPython in Java
A good example of embedding JPython in Java ships with the standard

JPython distribution (see Listing 16). I’ve added comments to the example.
As you can see, it’s relatively easy to embed JPython into a Java pro-

gram. The example doesn’t do the subject justice. In my book, Program-
ming the Java APIs with JPython, there’s an example that dynamically
loads JPython servlets from a Java servlet using the embedding tech-
nique shown.

Vote for Your Favorite
A lot of 100% pure programming languages work in the JVM, and JDJ

wants your opinion of which are the best, and why. An example list fol-
lows: JPython, NetRexx, Rhino, Instant Basic, Jacl, BeanShell, Pnuts,
Bistro, Kawa (Lisp/Scheme like).

Scorecard
How does JPython score? The table below shows my opinion – 90%.

Drop by the JDJ Forum and put in your own two cents’ worth!

AUTHOR’S SCORECARD FOR JPYTHON
• Ease of use ...10
• Embeddability ..10
• Resemblance to parent language...10
• Unique features..10
• String parsing ..10
• Productivity ..10
• Working well with Java classes..10
• Development environment/debugging ..2

Let’s drill down a bit on the criteria I rated.
• Ease of use: Python, written by Guido Van Rossum, was based on ABC,

which was developed to make programming easy for beginners.
Python is easy to use and easy to learn. In Virginia they’re using
Python as a first programming language to teach high school students
how to program. Score 10 of 10

• Embeddability: Python is easy to embed. Score 10 of 10
• Resemblance to parent language: JPython strives to be syntactically

identical to Python. Score 10 of 10
• Unique features: Python has some of the best features of Smalltalk,

Scheme, Icon and Java. Score 10 of 10

—Continued on page 96

67MARCH 2000

Java COM

IBM
www.ibm.com

Java COM

68 MARCH 2000

…
class Employee:
def __init__(self, fname="John", lname="Doe", id=1, manag-
er=None, dept=1):
self.__firstName = fname
self.__lastName = lname
self.__id = id
self.__manager = manager
self.__dept = dept

def getManager(self):
return self.__manager

def __str__(self):
values = self.__lastName,

self.__firstName, self.__id
return join(values,',')

public class Employee{
private String firstName, lastName;
private int id, dept;
private Employee manager;

public Employee(){
firstName = "John";
lastName = "Doe";
id = 1;
manager=null;
dept=1;

}

public Employee(String fname, String lname, int id, Employee
manager, int dept){
firstName = fname;
lastName = lname;
this.id = id;
this.manager = manager;
this.dept = dept;

}

public Employee getManager(){
return manager;

}

public String toString(){
StringBuffer buf = new StringBuffer();
buf.append(lastName+',');
buf.append(firstName+',');
buf.append(""+id);
return buf.toString();

}
…
…
}

from javax.swing import JFrame, JButton, JTextField, JLabel,
JPanel
from string import split
from pawt import GridBag
from Employee import Employee

class EmployeeForm(JFrame):
def __init__(self):
JFrame.__init__(self, "Employee Form")
pane = JPanel()
self.contentPane.add(pane)
bag = GridBag(pane)

#Create a name, and id text field.
self.__name = JTextField(25)
self.__id = JTextField(10)

#Create and add a "Name" and "ID" label.
name = JLabel("Name", labelFor=self.__name, displayedM-

nemonic=ord('N'))
bag.add(name)
id = JLabel("ID", labelFor=self.__id,

displayedMnemonic=ord('I'))
bag.add(id, gridy=1)

Add the name and ID text field to the form.
bag.add(self.__name, gridx=1, weightx=80.00, anchor='WEST')
bag.add(self.__id, gridx=1, gridy=1, anchor='WEST')

#Create an okay button, add it, and set up its event han-
dler.
okay = JButton("Okay", mnemonic=ord('O'))
bag.add(okay, gridx=1, gridy=2, anchor='EAST')
okay.actionPerformed=self.handleOkay

self.visible=1
self.pack()

def handleOkay(self, event):
fname, lname = split(self.__name.text, " ")
id = int(self.__id.text)
employee = Employee(fname, lname, id)
print employee

if __name__=="__main__":EmployeeForm()

Listing 4 :Java EmployeeForm
import javax.swing.*;
import java.awt.GridBagLayout;
import java.awt.GridBagConstraints;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import employee.Employee;

public class EmployeeForm extends JFrame{
private JTextField name;
private JTextField id;

public EmployeeForm(){
super("Employee Form");
JPanel pane = new JPanel();
getContentPane().add(pane);

pane.setLayout(new GridBagLayout());

// Create a name, and id text field.
name = new JTextField(25);
id = new JTextField(10);

// Create and add a "Name" and "ID" label.
JLabel nameLabel = new JLabel("Name");
nameLabel.setLabelFor(name);
nameLabel.setDisplayedMnemonic('N');
GridBagConstraints constraint = new GridBagConstraints();
pane.add(nameLabel, constraint);

JLabel idLabel = new JLabel("ID");
idLabel.setLabelFor(id);
idLabel.setDisplayedMnemonic('I');
constraint.gridy=1;
pane.add(idLabel, constraint);

// Add the name and ID text field to the form.
constraint.gridy=0; constraint.gridx=1;
constraint.weightx=80.00;
constraint.anchor=GridBagConstraints.WEST;
pane.add(name, constraint);
constraint.gridy=1;
pane.add(id, constraint);

Listing 3: JPython Employee Form

Listing 2: Java Employee Class

Listing 1: Python Employee Class

69MARCH 2000

Java COM

Pramati
www.pramati.com

The Java servlet API specifies
a very lightweight framework for
developing Web applications.

Although servlet technology is just
one of the building blocks in the J2EE

architecture, developers often use servlets to
build full-fledged Web applications. Today several
vendors and organizations provide servers and con-
tainers that implement the servlet API. For an
overview of the servlet programming model, and
some of the advanced features of Java servlets, refer
to Part 1 of this article (JDJ, Vol. 5, issue 2).

As a lightweight framework, the servlet API
doesn’t impose a very strict programming model.
Specifically, the API specification leaves certain
design decisions to the developers. The servlet spec-
ification also added and withdrew (deprecated) cer-
tain features over its evolution. Unfortunately,

though such deprecation was necessary to bring robust-
ness to the servlet model, such changes sometimes cultivated

incorrect programming practices. In addition, container vendors
follow different models for implementing the API specification. In

such a scenario it’s essential for servlet programmers to be careful while
making assumptions regarding those aspects that aren’t covered by the
servlet specification.

In this article I’d like to conduct an analysis of some of the design prac-
tices that servlet developers often undertake while developing Web
applications. I draw some of the inputs for this article from the archives
of the Servlet Interest Mailing List. Note: Some of the practices may not
affect small-scale Web applications. The focus of my article is on
servlets for large-scale Web applications that are required to be portable
and scalable. While discussing these practices, I assume the containers
will provide advanced features such as clustering, failover, and more.

Explicit Servlet Instantiation
This is a novice practice. Experienced programmers would probably snub me

for mentioning this because they never do it. Nonetheless, allow me to elaborate on why
you shouldn’t instantiate servlets explicitly.
In brief, the hosting servlet container creates servlet instances. Instances created explicitly

by applications can’t receive HTTP requests from clients.
A servlet container creates servlet instances in response to HTTP requests. As discussed in Part

1 of this article, the purpose of a container is to receive HTTP requests, construct or locate a
servlet instance, construct the environment for the servlet instance (a ServletContext), construct
the request and response objects (the HttpServletRequest and HttpServletResponse objects),
and delegate the incoming request to the servlet instance.

The key point here is that it’s the servlet container’s responsibility (and prerogative) to create servlet
instances and delegate requests. Both the threading model that the developer follows and the instan-
tiation model implemented by servlet containers dictate how and when servlet instances are created.

Java COM

70 MARCH 2000

Java Servlets:
Design Practices
Java Servlets:
Design Practices

AN ANALYSIS OF DESIGN PRACTICES USED BY
SERVLET DEVELOPERS IN WEB APPLICATIONS

WRITTEN BY A.V.B. SUBRAHMANYAM

Part 2

J D J F E A T U R E

71MARCH 2000

Java COM

Applied
Reasoning

www.appliedreasoning.com

Java COM

72 MARCH 2000

If a servlet implements the SingleThreadModel interface, the servlet
container delegates each concurrent request to a different servlet
instance or serializes incoming requests so that a single instance handles
all the incoming requests, one after the other. If your LoginServlet imple-
ments the SingleThreadModel interface and there are five concurrent
requests to this servlet, there are two possibilities. The first is that the con-
tainer will delegate these five requests to five different instances of the
LoginServlet. Alternatively, each of these login requests will be handled in
series by just one instance. Once all the requests are served, the contain-
er may hold the instance(s) in a pool and reuse them for future requests.

For servlets that don’t implement the SingleThreadModel interface,
the instantiation policy depends on the container implementation.
While some containers maintain a pool of instances, with each instance
handling requests in different threads, some other containers delegate
all requests in different threads to just one instance. However, the new
Java Servlet API 2.2 specification mandates that a container must main-
tain one instance per servlet per Java Virtual Machine in an application.

Servlet instances are created and destroyed according to the policies .
There’s nothing that actually prevents you from creating a servlet
instance as long as the LoginServlet class is available in the container’s
class path. Such an instance will be independent of the host servlet con-
tainer. The container can’t know about it. It can’t manage the life cycle of
such an instance. You’re probably loading the servlet container in some
unwanted way.

What’s Wrong with Instance Variables?
What’s wrong with instance variables in servlets? After all, servlets are

normal Java objects. Well, yes, they are normal Java objects. But the
servlet container manages them and that makes all the difference.

There are at least two reasons why a servlet developer would want to
have instance variables in a servlet. One is to store request-specific state
(e.g., state pertaining to a user session including any conversational
state); the second is to store state that’s common to several requests (e.g.,
application state).

In either case servlet instance variables are not the best solution for
handling state. Let me rule it out completely before we discuss better
solutions provided by the specification.

In addition to the container’s instantiation model and the servlet’s
threading model discussed above, two more issues are to be considered
here:
1. Clustering and load balancing: As discussed in Part 1, if your con-

tainer provides clustering facilities, you can mark your Web applica-
tions as distributable. In this case the container instantiates the
servlets in multiple JVMs. Although the servlet specification requires a
sticky load-balancing strategy, container vendors may choose to
implement instance-independent load balancing with distributed
sessions and state. In such cases there’s no guarantee that all requests
from the same client session will be handled by the same JVM, and
hence the same set of instances.

2. Swapping user sessions: Containers are free to swap user sessions and
the associated load from one node to another in a cluster. In case of
failure – say, a crash – of one JVM on one host, the cluster can also be
configured to shift the load (and the session data) to another JVM
(failover) or to restart the failed node.

Thus there’s no guarantee that the same servlet instance will receive
all the requests (from one user or all users) in a Web application.

Therefore, if not by specification, servlets are stateless by implication.
What’s the solution for handling state?

The best solution for handling request-specific state is to store it in the
HttpSession object associated with the request. In the case of distrib-
utable servlet applications, the Servlet API 2.2 specification mandates
that such state be serializable. It’s good practice to ensure that all your
session variables are serializable whether your application is distrib-
utable or not. Who knows? When your user base increases, you may want
your Web application to be distributable.

For handling application-specific state (say, a list of addresses that’s
common to all users), servlet containers provide you with a ServletContext
object. This object is similar to HttpSession in functionality. The main dif-
ference is that while an HttpSession object is specific to a client session, a
ServletContext object is specific to a Web application on a given contain-
er. Irrespective of user sessions, all servlets in a Web application in a given
container can access and share information via a ServletContext object.

What happens if your application is distributable and you want your
application state stored in the ServletContext object to be shared across
containers in a cluster? The servlet API doesn’t provide for this.

The specification doesn’t guarantee any kind of persistence of the
state information (whether you store it in HttpSession or in ServletCon-
text objects). In case you require persistent state management, it’s better
to devise your own mechanism, using some external data storage (files
or databases), or delegate this to some other back-end component or
system. Alternatively, check with your container vendor.

What about using static variables in servlets? There are three points to
consider:
1. Are your static variables read-only? If not, you need to synchronize

while updating such variables.
2. In case your static variables aren’t read-only, you should also consider

the effects of the distribution of the application. How do you make
sure that static variables in different JVMs are consistent?

3. How do you protect your static variables/methods from other Web
applications deployed on the same container (and JVM)?

To avoid these issues, consider storing such data in ServletContext objects.

SingleThreadModel – Why? And Why Not?
When and why should you implement the SingleThreadModel inter-

face? This is a dilemma often faced by servlet developers.
Let me address the why part first.
Your servlets may implement the SingleThreadModel interface to

make them (but not necessarily the resources that your servlets access)
thread-safe. To quote from the API documentation: “If a servlet imple-
ments this interface, you are guaranteed that no two threads will execute
concurrently in the servlet’s service method. The servlet container can
make this guarantee by synchronizing access to a single instance of the
servlet, or by maintaining a pool of servlet instances and dispatching
each new request to a free servlet.”

Thus the specification guarantees that an instance of a SingleThread-
Model servlet handles one incoming HTTP request at a time. Your
servlets should implement this interface if you want to protect instance
variables and other nonshareable resources from multiple request
threads. But this doesn’t guarantee that requests to a SingleThreadMod-
el servlet will be handled sequentially. As discussed above, this is imple-
mentation-specific. Don’t expect a “hit counter” servlet to work with a
SingleThreadModel. This doesn’t suffice.

The same effect can be achieved by synchronizing the various entry
points (methods such as init(), service(), destroy(), etc.) into a servlet
instance from the container. In this case the specification requires that con-
tainers serialize requests to that servlet instance instead of creating an

TABLE 1 Instancing and threading model

INSTANCES THREADS HOW TO ACHIEVE?
One Multiple Servlet that does not implement the

SingleThreadModel interface

One Single Approach 1: Servlet that does not implement the
SingleThreadModel with synchronized service()
method
Approach 2: SingleThreadModel servlet

Multiple One thread SingleThreadModel servlet
per instance

73MARCH 2000

Java COM

InetSoft
www.inetsoftcorp.com

Java COM

74 MARCH 2000

instance pool, as is done in the case of SingleThreadModel servlets. Howev-
er, you may not be required to take such an extreme step. For performance
reasons it’s better to narrow down the synchronization blocks in your code.

To summarize: three threading scenarios are possible (see Table 1).

What About Connection Pools?
How do you manage connections to databases and other

resources/systems in a servlet-based Web application?
First, why do you need connection pooling? It saves the connection

creation and disposal overheads. Once your application gets a connec-
tion to a relational database and finishes processing the database
updates, it’s better if it retains the connection object for future use. For
efficient resource utilization you need connection pooling, which is a
mechanism for recycling your connection objects.

Let’s now examine some typical connection pooling strategies that
servlet developers adopt. I draw these strategies from Java Servlet Pro-
gramming and from various discussions from the Archives of the Servlet
Interest Mailing List.

Connection Object as an Instance Variable
In this approach each servlet maintains its own connection object as an

instance variable. The connection object is usually created in the init()
method of the servlet. Thus each instance of the servlet holds a connection
object. Look at the sample code in Listing 1. This approach is adequate for
nontransactional database updates in the autocommit mode, since con-
nection objects are specified to be thread-safe. But what happens if you
want to implement multiple updates/inserts within a single transaction?

In the case of transactions your database server will associate each
connection object with a single transaction. Consider the case of a
servlet implementing a transaction. If an instance of this servlet is pro-
cessing two concurrent requests in different threads, your transactions
get mixed up. Instead of two transactions (as you’d expect), the database
sees only one. Try the Java program in Listing 2. The TestThread class
emulates a servlet instance processing two concurrent requests. In this
class two threads are trying to do different transactions in two threads on
the same connection object. You’ll find that only those updates that
occur after the rollback in the second thread will be committed to the
database. Try it with different sleep intervals. The result? This approach
doesn’t preserve atomicity of transactions.

You can avoid this by synchronizing the transactional calls on the con-
nection object as a group (try synchronizing the transact() method in
Listing 2) or by implementing the SingleThreadModel interface, but your
servlets will be penalized in terms of performance.

This solution isn’t safe for transactional database access.

Connection Object Held in HttpSession
Instead of holding the connection object as an instance variable, you

may want to store it in the HttpSession associated with a client so that all
servlets serving a client may reuse the connection object. However, you
should consider the following here:
• What happens if your servlet container chooses to serialize some of

the session objects to conserve memory or to shift the load from one
JVM to another in the same cluster? The serialization process would
fail since connection objects aren’t serializable.

• In case your application is distributable, the container requires that
the session variables be serializable. If you try to pass a connection
object to the HttpSession, the container may throw an IllegalArgu-
mentException.

• What happens if your application is serving a thousand concurrent
users? Your application would attempt to get a thousand connection
objects from your database server.

As you can see, the foregoing solution isn’t appropriate for developing
production quality applications.

CONNECTION POOL MANAGERS
Another widely used solution for connection pooling is to develop a

connection pool manager. Such a manager can take at least three forms:
a singleton, a static class or a servlet with static attributes/methods. In
all these cases the manager class would provide accessor methods to
manage a pool of connection objects.

This solution may open up a major security breach because such a
manager class/object is accessible from all servlets within the same JVM.
If your servlet container is hosting multiple applications, there’s nothing
to prevent a rogue servlet from getting hold of one of the connection
objects and destroying your database tables. Be wary of such a solution.
You may need to provide an additional security mechanism (using the
protection domains and principles of Java 2 security architecture) for
returning connection objects only to trusted objects.

The DBConnectionBroker toolkit from Java Exchange recommends an
alternative approach to the use of connection pool manager. This toolkit
provides a DBConnectionBroker class to implement a connection man-
ager and an HttpServletJXGB servlet that holds it as a static protected
variable. This servlet is supposed to serve as a base class for all your
servlets requiring database access. Instances of the derived servlet class-
es can therefore make use of the connection pool manager. In servlet
containers before version 2.2, if servlets from multiple applications
deployed on the same JVM extend from the same HttpServletJXGB class,
there’s still scope for the security issue mentioned above.

JDBC 2.0 OPTIONAL PACKAGE EXTENSION API
This Optional Package Extension API has several enhancements over

the standard JDBC API. One of the enhancements is connection pooling.
In this API the getConnection() method of the javax.sql.DataSource class
returns connection objects. Depending on how the DataSource class is
implemented, the getConnection method can return pooled connec-
tions. A significant implication of this approach is that the responsibili-
ty of connection pooling is delegated to the driver implementer. In addi-
tion to the above API, some of the JDBC driver vendors also implement
connection pooling. Check the list of vendors at http://java.sun.com/
products/jdbc/drivers.html.

Of all the approaches discussed in this section, database drivers com-
plying with the JDBC 2.0 Optional Package Extension API offer the most
robust solution for connection pooling.

Servlets and Operating Environment Resources
APPLICATION THREADS

Can a servlet start new threads? Not in all cases, as discussed below.
The environment in which servlet instances operate is guaranteed to

be valid only during the course of a client request, that is, during the ser-
vice() method. This environment includes the HttpSession, ServletCon-
text, HttpServletRequest and HttpServletResponse objects. Make sure
your application threads don’t refer to these objects beyond the context
of the service() method. In case you need specific information from
these objects, consider copying such data into temporary objects
(defined to suit your requirements) before starting any thread, and pro-
gram the threads to use data from these temporary objects.

SECURITY
As indicated in the Servlet Specification 2.2, a servlet container may

impose additional security restrictions on the accessing resources in the
servlet environment. These resources include the JVM (threads, etc.),
network, file system, and more. Although none of the container vendors
seem to be moving in this direction currently, we can expect such restric-
tions from specialized servlet containers or domain-specific e-com-
merce products.

FILE SYSTEM
The servlet specification doesn’t guarantee any specific “current work-

ing directory” from which you can access text files, configuration files,
images, and so on. Two approaches can guarantee container-indepen-

75MARCH 2000

Java COM

SIC Corp
www.sic21.com

dent file system access. The first approach is to keep all such resources
accessible to the class path, and use the getResource() or getResource-
AsStream() methods of the class loader to get the URL or an InputStream
corresponding to resources. Alternatively, you can store the absolute loca-
tions of such resources on the file system as initialization (init-param) or
context (context-param) entries in the associated deployment descriptor.

Summary
As Douglas Bennet points out, software is soft because of the soft pro-

gramming constructs used to build software. There are many ways to
implement a piece of functionality and many ways to use an API.
Although most of these ways might work, not all of them may be resilient
to changes. It’s not always easy to grasp the implications of our designs,
and there’s always scope for debate. Nonetheless, there are better means
to be considered that lead to better applications.

In this article I discussed some of the design practices with Java servlets.
While most of the discussion is based on the Java Servlet Specification
v2.2, by no means is it complete. The particular practices chosen for this
discussion were motivated more by the need to probe into the intricacies
involved in servlet development than on the practices per se.

References
1. Java Servlet Specification v2.2:

http://java.sun.com/products/servlet/2.2/index.html
2. Archives of Servlet-Interest Mailing List:

http://archives.java.sun.com/archives/servlet-interest.html
3. Hunter, J., and Crawford, W. (1998). Java Servlet Programming.

O’Reilly & Associates.
4. Gamma, E., Helm,R., Johnson, R., and Vlissides, J. (1994). Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison Wesley.
5. Db Connection Broker: www.JavaExchange.com
6. The JDBC 2.0 Optional Package:

http://java.sun.com/j2ee/bulletin/jdbc_2/extension.html
7. Bennet, D.W., (1996). Hard Software: The Essential Tasks. Manning

Publications.

AUTHOR BIO
Dr. Subrahmanyan is a technical consultant with the electronic commerce division of Wipro Technologies,
based in Bangalore, India.You can visit him at his Web site, www.Subrahmanyam.com.

Java COM

76 MARCH 2000

public MyServlet extends HttpServlet {
private Connection connection;
public init(ServletConfig config) {

// Get database details from config
...
// Create a connection object
connection = ...

}

public void service(HttpServletRequest req, HttpServletRe-
sponse res) {

// Use the connection object for database access
...

}
}

import java.sql.*;
class Transaction {

private Connection conn;
Transaction() {

String dburl = "jdbc:odbc:Test";
String user = "scott";
String password = "tiger";
try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
conn = DriverManager.getConnection(dburl, user, password);
System.out.println("Connection created.");

} catch(Exception e) { e.printStackTrace(); }
}
void transact(int action) {

Statement stmt = conn.createStatement();
try {

conn.setAutoCommit(false);
switch (action) {
case 1 :

stmt.executeUpdate("insert into dept val-
ues(41,'100','100')");
System.out.println("1");
try { Thread.sleep(5); catch(Exception e) {}
stmt.executeUpdate("insert into dept val-
ues(51,'101','101')");
System.out.println("11");
stmt.executeUpdate("insert into dept val-
ues(62,'102','102')");
System.out.println("111");
try { Thread.sleep(2); } catch(Exception e) {}
conn.commit();
System.out.println("1 commited");

break;
case 2 :

stmt = conn.createStatement();
stmt.executeUpdate("update dept set dname='SomeAc-
counting' where deptno=10");
System.out.println("2");
stmt.executeUpdate("update dept set dname='SomeAc-
counting' where deptno=20");
System.out.println("22");
try { Thread.sleep(5); } catch(Exception e) {}
conn.rollback();
System.out.println("2 rolled back");
stmt.executeUpdate("update dept set loc='Bangalore'
where deptno=10");
System.out.println("222");
break;

default :
break;

}
} catch(Exception e) { e.printStackTrace(); }

}
}

public class TestThread extends Thread {
Transaction t;
int action;
public TestThread(Transaction tThread, int action) {

t = tThread;
this.action = action;

}
public void run() {

t.transact(action);
}
public static void main(String s[]) {

Transaction t = new Transaction();
TestThread t1 = new TestThread(t, 1);
TestThread t2 = new TestThread(t, 2);
t1.start();
t2.start();

}
}

Listing 2: Connection Object - One Transaction or Two Transactions?

Listing 1: Connection Object as an Instance Variable

subrahmanyam_avb@technologist.com

77MARCH 2000

Java COM

KL Group
www.klgroup.com

Java COM

78 MARCH 2000

JavaCon 200
www.javaco

79MARCH 2000

Java COM

00 Ad Spread
on2000.com

E
nterprise JavaBeans are being promoted as the component
architecture for the new decade. The word Enterprise in the
name would imply that EJBs are to the server environments
what JavaBeans are to client computing. Both are compo-
nent models, both are for Java, both try to deliver on the
promise “write once, run anywhere.” Beyond that, however,

there is little commonality between them. EJB is not actually a software
product but rather a specification of a server-side component architec-
ture, to be implemented by vendors of server software. The specification
combines object distribution with transaction processing and persis-
tence. Its goal is to provide a standard architecture for building scalable,
portable and distributed enterprise systems. The EJB architecture
attempts to separate the business logic in the enterprise beans from the
services that are required to host the beans. The promise of the architec-
ture is that developers can focus on building the beans with little or no
consideration given to the details of target runtime environments.
According to the specification, the enterprise bean developer ships the
bean with environment-neutral information on how to deploy it. Based
on this information, the target environment expert adapts the bean to the
environment using the environment-specific deployment tools.

The future potential of EJBs is great, hence the interest and effort
being expended on them by many large server software vendors. The EJB
architecture provides application software vendors with a single way to
deploy the same application across a large number of very different serv-
er platforms, without their necessarily having to know all the details of
writing applications on those platforms. Another side of the same coin is
vendor-neutral standardization of server component software, which is
important for enterprises with heterogeneous platforms. Even for orga-
nizations that aren’t concerned about diverse environments, the EJB
architecture and programming model can be used as a standard for serv-
er software development across different units.

This article provides a brief overview of the past, present and future of
Enterprise JavaBeans. It also briefly describes an example EJB environ-
ment and its development tools. For space reasons we’ll refrain from
presenting any background information on transactions, security, per-
sistence or various other distributed object concepts.

EJB Overview
There are two types of enterprise beans: entity beans and session

beans. The former model business entities, such as a customer, an
invoice or a contract. Entity beans are persistent, that is, they’re stored in
a database. Their persistence can be managed either by the runtime
environment (EJB container) or by the bean itself. The advantage of the
container-managed scheme is that the container handles all persistence
and back-end peculiarities instead of having this knowledge embedded
in application code. This scheme limits the beans’ possible property
types to a relative few, however, because the container accesses the
properties directly when a bean is stored and restored. The only thing
that can be assumed across various containers is that their persistence
mechanisms support the basic Java types. With the bean-managed
scheme the container doesn’t access a bean’s properties directly. The
entity bean itself knows how to store and restore its state. Therefore the
EJBs’ internal composition structure can be whatever the developer
desires and the container doesn’t limit the property types. The downside
of this approach is that the developer has to code all the database access.
For a small, single application this is probably of little concern. For large
applications this may lead to potential maintenance and performance
problems.

Java COM

80 MARCH 2000

INTEREST
+

EFFORT
+

A WIDE RANGE
OF AVAILABLE
EJB BUSINESS
COMPONENTS

=
AN ATTRACTIVE

SERVER SOLUTION

WRITTEN BY TIMO SALO AND JUSTIN HILL

J D J F E A T U R E

Session beans control workflow. They con-
tain the logic for managing business process-
es and tasks, like “make a reservation” or
“create a new customer.” Due to their task-
centric nature, the session beans are tran-
sient and not persistent. Session beans inter-
act with entity beans and act as agents for
client applications. A client application inter-
acting with session and entity beans is pre-
sented in Figure 1.

Having the workflow logic in a session bean
rather than in the client application reduces
the network traffic and the number of con-
nections needed. Session beans can be either
stateful or stateless. Stateful session beans
maintain their state across multiple client
requests and are useful for long-running con-
versational tasks. Multiple clients, however,
can’t share the same bean instance because
the bean’s state depends on a particular con-
versation with a client. Stateless session beans
don’t maintain any state. Each method invo-
cation is independent of any previous invoca-
tion and operates only on data passed in as
parameters. The same bean instance can
serve multiple clients, thereby reducing the
amount of resources needed to serve the
clients.

A complete enterprise bean package
includes a description of how to deploy the
bean in the target environment. This descrip-
tion includes the bean’s interfaces, its persis-
tent fields, how the bean’s persistence is man-
aged, its transactional behavior, and its securi-
ty and environment properties. Based on the
deployment description, the EJB container
deployment tools create a wrapper (EJB object)
and a factory (EJB home) for the bean that
adapt the bean to the container. The deploy-
ment process also includes generation of all the
distribution and persistence services for the
bean. A deployed enterprise bean is presented
in Figure 2.

An EJB container is a runtime environment
for enterprise beans. The container’s six prima-
ry services are naming, distribution, concurren-
cy, transaction management, persistence and
security. The container also provides resource
management, including bean instance pooling
and activation.

The EJB object implements the enterprise
bean’s remote interface. Clients can’t access the
bean directly; they can only access the EJB
object that wraps the bean. The EJB object del-
egates the method invocations to the bean.
This delegation scheme allows the container to
intercept the messages between the client and
the bean in order to manage transactions,
security and persistence for the bean. Relation-
ships between entity beans and EJB objects are
presented in Figure 3.

An EJB home provides finder services for
locating beans and factory/life-cycle services
for creating and deleting beans. A home also
provides metadata about the beans, including a
bean’s remote interface, its primary key class
and its type (session or entity).

81MARCH 2000

Java COM

Meet JDJ
EDITORS AND COLUMNISTS
Attend the biggest Java developer event
of the year and also get a chance to meet
JDJ's editors and columnists

Sean Rhody
Editor-in-Chief, JDJ

Sean is the editor-in-chief of Java
Developer’s Journal. He is also a

principal consultant with Computer
Sciences Corporation.

Alan Williamson
JDJ Straight Talking Columnist

Alan is the “Straight Talking” columnist
of JDJ, a well-known Java expert,

author of two Java books and con-
tributed to the Servlet API. Alan is the

CEO of n-ary Consulting Ltd., with
offices in Scotland, England

and Australia.

Ajit Sagar XML-Journal
Editor-in-Chief, XML-Journal

Ajit is the founding editor of
XMLJournal and a well respected

exterp in Internet technologies. He is
a member of the technical staff at

i2Technologies in Dallas, Texas,
where he focuses on

Web-based e-commerce.

Jason Wesra
EJB Home Columnist

Jason is the “Enterprise Java Beans”
columnist of JDJ and a Managing

partner with Verge Technologies Group,
Inc., a Java consulting firm specializing

in Enterprise JavaBeans solutions.

MEETING
September 24-27, 2000

Santa Clara Convention Center
Santa Clara, CA

Client

S
es

si
o

n
B

ea
n

Entity
Bean

Entity
Bean

Entity
Bean

Entity
Bean

EJB Container

FIGURE 1 Client application interacting with
session and entity beans

Client EJB Container

Hom
e

In
te

rf
ac

e

EJB
Home
Stub

Remote
Interface

EJB
Object
Stub

Remote
Interface

Bean

EJB
Object

Hom
e

In
te

rf
ac

e

EJB
Home

FIGURE 2 Deployed enterprise bean

Department
EJBObject

1

Another
EntityBean0..*

Employee
EJBObject

0..*

0..*

1

Department
EntityBean

1

1

Employee
EntityBean

1

FIGURE 3 Relationships between entity beans
and EJB objects

Java COM

82 MARCH 2000

EJB Specifications
The EJB world, just like the rest of the Java

world, is very specification-centric. The first
EJB specification was released in the beginning
of 1998. Version 1.0 defined the basic EJB com-
ponents and the component contracts, includ-
ing the container, homes, EJB objects, session
and entity beans, and deployment descriptors.
Version 1.0 also specified various other things,
such as developer roles, exceptions, distribu-
tion, transactions, persistence and security.

The EJB model specified in version 1.0 cer-
tainly has many advantages. The first version,
however, omitted many details and had a num-
ber of limitations that application developers
and container providers had to work around.
For example, version 1.0 leaves such essential
OO concepts as inheritance and associations
unspecified. This has caused either the tool
vendors to add nonportable extensions to con-
tainers or the application developers to emu-
late these missing features in applications. Ver-
sion 1.0 also states that entity beans are
optional only, and due to the lack of an API for
accessing the container’s services the bean-
managed persistence is nearly impossible to
implement just by following the specification.
It’s also difficult to implement portable finders
because the specification doesn’t define any
semantics for the finders.

The new 1.1 specification version doesn’t
introduce any major revisions to 1.0. It primar-
ily introduces small enhancements here and
there, which do, however, make a difference.
Version 1.1 facilitates association implementa-
tions by specifying associated homes. The
specification also opens doors for inheritance
implementations by stating that enterprise
bean classes can have superclasses. Some
other key revisions are that entity beans are
mandatory, finders can return collections in
addition to enumerations, the security model
has been refactored, deployment descriptors
are stored in XML format rather than in binary
format, and structural deployment informa-
tion (e.g., home, fields) is separated from
assembly information (e.g., security, transac-
tional behavior).

An Example EJB Environment
IBM WebSphere Advanced Edition is an

example of an enterprise server environment
that hosts EJBs. The EJBs are developed and
deployed using VisualAge for Java. The
deployed EJBs are then executed within the
WebSphere Application Server.

VisualAge for Java provides tools for EJB cre-
ation, packaging and deployment. It supports
top-down, bottom-up and meet-in-the-middle
approaches for developing EJB applications.
With the top-down approach the database
schema is created from existing EJBs. The bot-
tom-up approach supports creating EJBs from
an existing schema. The meet-in-the-middle
approach is for situations in which existing

EJBs are mapped to an existing schema. A
screen capture of the EJB creation is presented
in Figure 4.

The created EJBs are packaged into JAR files.
VisualAge produces three types of JAR files: a
generic portable JAR file, a predeployed JAR file
for WebSphere Advanced Edition and an EJB
client JAR file. The deployment step includes
mapping EJBs to a database schema, generat-
ing the CRUD services for container-managed
persistence, generating the EJB objects, gener-
ating EJB homes and corresponding finders,
and generating the distribution services (i.e.,
stubs and skeletons).

VisualAge for Java also includes EJB client and
server environments for testing and debugging
EJBs. The EJB server is a lightweight version of
the WebSphere Application Server that runs
within the VisualAge IDE. VisualAge can auto-
matically generate a test client for a deployed
EJB and run it against the test server. This signif-
icantly simplifies and speeds up testing of EJBs.

WebSphere Application Server Advanced
Edition is a highly scalable EJB server that sup-
ports multiple platforms, databases and trans-
action systems. Its workload manager provides
server clustering and application-level work-
load management and distribution across mul-

FIGURE 5 WebSphere Advanced Edition administrative console

FIGURE 4 EJB creation using VisualAge for Java tools

83MARCH 2000

Java COM

Embar
cadero

p/u
www.

embarcadero.

com

tiple servers. The distributed transaction man-
agement executes across multiple applications
and components. The distributed security
operates at EJB level and can utilize third-party
authentication and secure association services.
The user registries are LDAP-based and the
access control lists and policies can be estab-
lished at the user and group levels, and for spe-
cific calls or methods within applications.
Advanced Edition includes remote administra-
tion, logging and analysis capabilities, and it
also can be monitored with Tivoli-based tools. A
screen capture of the Advanced Edition admin-
istrative console is presented in Figure 5.

The server also provides a wide range of
capabilities for interacting with enterprise
databases, transaction processing systems and
other applications.

The application server supports both con-
tainer- and bean-managed persistence. The
messaging between EJBs is optimized for both
remote and local situations: if both the sender
and the receiver EJB reside in the same con-
tainer, the messaging bypasses the Object
Request Broker. This optimization is especially
important with applications that consist of
large numbers of fine-grained objects.

The Future of EJBs
The first two EJB specification versions were

written primarily by Sun. Subsequent develop-
ment, however, has been done within the Java
Community Process. Two EJB-related specifi-
cations are currently being developed: the EJB
2.0 specification and a specification for
UML/EJB mapping. Expert groups for both
began their work at the end of last year and first
drafts can be expected later this year.

The EJB 2.0 will be a major revision to the
specification. The Java Specification Request
delineates several important objectives for the
specification. The most important ones are full
support for inheritance and associations, and
portable query syntax for finder methods. The
other objectives include integration with the Java
Message Service, improved entity bean persis-
tence, additional methods on the home interface
and a mechanism for extending containers. The
JMS integration will allow asynchronous method
invocation from clients, which is important for
systems that have part-time disconnected
clients. The persistence enhancements include
data access components that encapsulate the
database access, and a standard API that enables
persistence tools to operate across different con-
tainers. The additional methods in the homes are
for providing behavior that is independent of
finding and managing individual bean instances.
For example, a home might have a batch-update
method that operates on all instances within the
home. The container extension mechanism,
which is based on an interceptor pattern, pro-
vides means for specializing the container’s
behavior for specific operational environments,
thus reducing the need to have several versions
of the base container itself.

The objective of the UML/EJB Mapping
Specification is to provide means for modeling
EJB applications using UML. The specification
defines a set of standard UML extensions
expressed as a UML profile. This profile
describes the relationship of EJB constructs
and a deployment descriptor to UML model
elements, the forward engineering transforma-
tion from the model elements to EJB imple-
mentation artifacts, and the reverse engineer-
ing transformation from the implementation
artifacts to the model elements. The specifica-
tion also defines a mechanism for associating
UML models and EJB implementation artifacts
that are stored in the same JAR file. The mech-
anism is based on XML DTD and can be used
for reflection and tool automation.

Conclusion
Even though Enterprise JavaBeans provide

an advanced server architecture, they won’t
make server application development trivial.
Building high-performance enterprise servers,
with or without EJBs, is never simple. Still, the
EJB specification represents a significant step
forward in the systematic development of scal-
able and distributed component-based appli-
cations. The advantages of unifying on a single
server architecture and programming model
for Java applications are enormous, even for
applications that aren’t distributed in nature or
deployed on different server platforms.

The specification is by no means perfect or
complete as yet. Where the specification is lacking,
developers and vendors must make up the differ-
ence or do without. This can mean guessing the
direction the specification is evolving, developing
additional functionality and, later, creating migra-
tion strategies from the proprietary enhancements
to some future version of the specification.

It’s unlikely that there will be a viable alterna-
tive to EJB for a server component architecture
in the near future. Most major server software
providers offer EJB environments, and there’s a
lot of general interest and effort being invested in
EJBs throughout the software industry. This,
added to the fact that there’s already a wide range
of EJB business components available from
independent software vendors, makes EJBs one
of the most attractive server solutions today.

AUTHOR BIOS
Timo Salo, a senior software engineer for IBM Transarc, has been
developing large-scale, multitier distributed systems for banking and
financial industries since 1985.Timo is currently architecting EJB
persistence tools for various IBM development environments, including
VisualAge for Java and WebSphere Application Server.

Justin Hill, a senior software engineer at IBM, is currently working
on Smalltalk and Java feature development. Since 1987 he has
been developing object-oriented systems for the banking,
telecommunications, process manufacturing and insurance industries.
Justin has specialized in object persistence and object-oriented query
languages for the last five years.

tjsalo@us.ibm.com / jhhill@us.ibm.com

Java COM

84 MARCH 2000

Unlocking the Secrets
of the Java Media

Framework

Unlocking the Secrets
of the Java Media

Framework
PART 2 OF 3

J D J F E A T U R E

WRITTEN BY LINDEN DECARMO

85MARCH 2000

Java COM

Embar
cadero

p/u
www.

embarcadero.

com

The Internet is strewn with multimedia

minefields. Lost or out-of-sequence packets and

transmission delays can create havoc in your

applications. Fortunately, you can overcome

these problems by using protocols optimized for

multimedia transportation. This article ex-

plains why these protocols are necessary, and

examines how the JMF implements them and

how you can use them to spice up your pro-

grams.

Transportation Woes
The TCP/IP (Transmission Control Proto-

col/Internet Protocol) dominates IP (Internet
Protocol) traffic because of its reliability. This
reliability is possible because TCP/IP contains
numerous software layers that prevent packet
loss and ensure that packets arrive in the order
they were sent.

Unfortunately, while TCP/IP’s reliability is
beneficial for textual data, it can have a devas-
tating impact on multimedia streaming. This

occurs because its numerous software layers
steal critical processing power away from mul-
timedia devices. Furthermore, reliability is
unnecessary for most multimedia applications
and may force disturbing pauses in the play-
back.

By contrast, the UDP (User Datagram Proto-
col) is a lightweight but unreliable protocol
that’s ideal for multimedia transport. Because
it doesn’t guarantee that packets will arrive at
their destination or that they will arrive in
sequence, UDP consumes less processing
power than TCP/IP. Although unreliability
sounds scary, few UDP packets are ever lost.
Should a packet be lost, multimedia CODECs
(Compressors/Decompressors), the software
algorithms that process multimedia data,
gracefully compensate to ensure smooth play-
back.

Although you can use UDP to transmit
audiovisual content, it isn’t optimized for mul-
timedia use. Consequently, the RTP (Real-Time
Protocol) is built on top of UDP and it provides
time stamps, synchronization, packet-loss
detection and other multimedia features (see
Figure 1). Since RTP is a binary protocol, you
must examine packet headers to determine
multimedia attributes such as audio or video
CODEC or sampling rate.

RTP may be deployed as a stand-alone pro-
tocol or as part of a higher-level protocol. For
example, the RTSP (Real Time Streaming Proto-
col) uses RTP to transmit audio and video
packets. However, you control RTSP with text-
based commands such as PLAY, STOP and
PAUSE (see Table 1). When the RTSP subsystem
receives one of these commands, it updates its
internal state and, if necessary, changes the
type of RTP packets it is transmitting.

It’s All in the Packaging
Last month we examined how you can play

popular file formats such as QuickTime or
.WAV with JMF. Unfortunately, these programs
struggle with Internet content because they
require that the entire file be downloaded
before commencing playback. Not only does
this ruin interactivity, but the gargantuan file
sizes make this approach impractical. There-
fore, streaming media content is specifically
optimized to enable immediate playback and
is not bound by file-size restrictions.

Since there’s no file format, RTP streams can
be identified by individual packet headers. For
instance, RTP packets contain media type and
frame size headers. The media type header
indicates the audio or video CODEC that’s
being transmitted (see Table 2). RTP supports
numerous audio CODECs, but most audio
packets contain PCM (Pulse Code Modulation)
or a PCM variant such as Mu-law or A-law. Sim-
ilarly, you can stream a variety of video
CODECs with RTP, but most JMF applications
use H.261.

The frame size header represents logical
subdivisions of data, and each packet contains

RTP

UDP

Internet (or IP)

Network hardware

FIGURE 1 The RTP protocol uses UDP to
transmit real-time multimedia
content.

RTP and RTSP:
Protocols that
address the
transportation
of multimedia
content over IP

a whole number of frames. Larger frame sizes
take longer to capture and transmit, and there-
fore may cause audio gaps as your application
is waiting for data. By contrast, extremely small
frame sizes can overwhelm your application
with tiny packets and can be difficult for audio
CODECs to decode. Consequently, if you’re
sending RTP packets, you should choose a
frame size that balances interactivity and pro-
cessing power.

Take Control of the Situation
RTP streams are grouped into entities called

sessions. A session contains two or more
devices exchanging multimedia content. Since

RTP is built on an unreliable protocol, there’s
no method to determine whether a session’s
RTP packets are being transported successfully.
Thus RTP is usually combined with RTCP (Real
Time Control Protocol), which lets you monitor
network traffic and track the session’s partici-
pants.

The Real Thing
Now that we’ve discovered how multimedia

content is transported over IP, it’s time to exam-
ine the JMF streaming APIs. Since the RTSP
programming model is similar to the JMF
devices we discussed last month, we’ll examine
it first.

RealNetworks uses RTSP as core protocol for
its RealPlayer and is a strong advocate for RTSP
in various Internet task forces. In an effort to
make RTSP and RealMedia content (e.g., .ra,
.ram) more pervasive, they’ve provided a JMF-
based RTSP runtime and SDK.

The first thing you’ll notice about RealNet-
works RTSP support is how smoothly it fits
into the JMF architecture. In fact, the applet
we created last month can play RealMedia
content without modification. Although it’s
possible to use vanilla JMF APIs with RTSP, the
RealNetworks Player provides exciting
enhancements that you’ll want to exploit in
your applications.

To access this new functionality, you ask the
Manager to create a Player that uses RealMe-
dia content. Then you detect the presence of
extra features by seeing if the Manager
returned a Player, which is an instance of
com.real.media.RMPlayer. The following ex-
ample illustrates how you can detect the pres-
ence of an enhanced RealNetwork Player. If it’s
a com.real.media.RMPlayer, you have access
to pause functionality and automated media
position information.

Java COM

86 MARCH 2000

Career
Central

p/u
www.careercentral.com

TABLE 1 RTSP uses text commands to
manipulate multimedia streams

RTSP COMMAND ACTION
PLAY Starts media playback.
PAUSE Pauses media playback.
SETUP Initializes an RTSP session.
TEARDOWN.................. Closes an RTSP session.

TABLE 2 List of audio and video formats
that can be transported with RTP

ENCODING NAME AUDIO/VIDEO DATA
PCM Audio
1016 Audio
G726-32 Audio
GSM Audio
G723 Audio
DVI4 Audio
DVI4 Audio
LPC Audio
PCMA. Audio
G722 Audio
L16. Audio
L16. Audio
QCELP Audio
MPA Audio
G728 Audio
DVI4 Audio
DVI4 Audio
G729 Audio
CN Audio
CelB Video
JPEG Video
nv Video
H261 Video
MPV Video
MP2T Audio/Video
H263 Video
dynamic. Application Specific

// create a Player to preview the selected

file

player = Manager.createPlayer(mrl);

// check to see if this is RealAudio con-

tent....

if (player instanceof

com.real.media.RMPlayer)

{

// if it is, we can take advantage of

this

// functionality....

rmPlayer = (com.real.media.RMPlayer)

player;

}

JMF Players and Controllers do not surface a
pause() method because they were designed to
play content on a local machine. When you call
the Player’s stop() method, it flushes (or
removes) buffers from its associated device
and enters stopped state. When playback is
restarted, these buffers can be refilled rapidly
and streamed to the device.

By contrast, it can take several seconds to
prefetch a Player that is streaming remote con-
tent. Thus you can’t flush these buffers when a
Player is stopped and still have a responsive
device. For these scenarios the RMPlayer sur-
faces the pausePlay() method.

pausePlay() pauses playback, but it doesn’t
flush buffers from the RMPlayer’s audio/visual
device (see the code below). This ensures that
playback can resume instantly when the user
hits the play button. An additional benefit of
this approach is that playback can restart
exactly where it was originally paused.
Resumption after a stop() is less exact because
the Player can detect only the approximate
location where it stopped.

// pause rather than stop -- no data loss

rmPlayer.pausePlay();

Like other Controller methods, pausePlay() is
asynchronous. When the RMPlayer finishes
pausing, it notifies your listener method with a
RMPauseEvent (see code below). Never assume
that the pause has completed until this event is
received.

else if (event instanceof RMPauseEvent)

{

// insert code to handle RMPauseEvent

here

}

Besides pause capabilities, the RMPlayer
provides automated stream position informa-
tion via the RMOnPosChangedEvent. The
RMPlayer sends an RMOnPosChangedEvent
every 100 milliseconds and you can use the
event’s getPositionInNanos() method to uncov-
er the active media time (see code below). This
approach is superior to polling since you don’t
waste processing cycles trying to guess the cur-
rent media time.

else if (event instanceof RMOnPosChanged-

Event)

{

// insert code to handle RMOn-

PosChangedEvent here

}

Diametrically Opposed
Unlike RealNetworks RTSP solution, Sun has

designed a hybrid RTP architecture. Part of the
solution is integrated with JMF, while the other
portion resides outside JMF. The core element
of this hybrid approach is the RTPSessionMan-
ager, which supports traditional JMF objects
such as DataSources and MediaHandlers.
However, it adds additional RTP-specific fea-
tures such as performance metrics and media
type detection.

The RTPSessionManager is a supervisory
object that manages all RTP sessions you wish
to control with JMF. It enables playback of RTP
content via the self-contained DataSource and
MediaHandler (see Figure 2).

The DataSource provided by the RTPSes-
sionManager is called RTPSocket. Like a con-
ventional DataSource, RTPSocket streams
packetized RTP content to client MediaHan-
dlers. However, RTPSocket has one unique
attribute: it can also output data. For example,
you can use it to transmit RTCP data or session
statistics (see Figure 3).

When you request that the JMF Manager
construct a Player to handle RTP content, it
searches for a MediaHandler that is compatible
with the RTPSocket. Normally, the only such
MediaHandler is the RTPSessionManager. This
occurs because the RTPSessionManager is a
special type of MediaHandler called a Media-
Proxy.

A MediaProxy manipulates content and for-
wards the modified content to a subsequent
MediaHandler. Thus they’re usually pure soft-

87MARCH 2000

Java COM

Embar
cadero

p/u
www.

embarcadero.

com

RTP MediaProxy
(RTP Session

Manager)
RTPSocket MediaHandler

FIGURE 2 RTPSessionManager components

PushStream

PushDestStream

Output Stream

(RTP)

Input Stream

FIGURE 3 RTPSocket sends multimedia
content to client MediaHandlers
and streams out session and RTCP
information.

ware entities, not associated with a particular hardware device. The por-
tion of the RTPSessionManager that implements the MediaProxy inter-
face translates (or depacketizes) RTP packets into flat data buffers that
other Players or MediaHandlers can process. The JMF Manager then
searches for a MediaHandler that can accept the output of the depacke-
tizer. If a compatible MediaHandler can be found, the stream can be
played.

MediaLocators to the Rescue
The process of constructing an RTP-enabled Player is dramatically

more complex than creating a simple audio or video player. Fortunately,
the Manager hides this complexity by letting you construct a RTPSocket
with a MediaLocator (see code below). The MediaLocator must be in the
following format:
rtp://IPaddress:port/mediatype where the IPaddress:port combination
is the address of the RTP session, and mediatype represents the type of
content in the session (i.e., audio or video).

if ((mrl = new MediaLocator(rtpServer)) == null)

{

System.err.println("Can't build RTP MRL for " + rtpServer);

}

After the Manager gives you a reference to the RTPSocket object, you
should pass the reference to the Manager’s createPlayer() method, as fol-
lows:

try

{

// Create a Player with the rtp DataSource....

rtpPlayer = Manager.createPlayer(rtpsource);

}

Because RTP sessions are sensitive to network traffic, it’s crucial that
you monitor session status. RTPSocket provides access to this informa-
tion by exposing an RTPControl object. If you call RTPSocket’s getCon-
trol() method with the appropriate string, it will return a RTPControl
object as follows:

// we'll use this name to query the rtp player for an

// rtp control.

private static final String rtpControlName = "javax.media.rtp.RTP-

Control";

RTPControl rtpcontrol;

// get the RTP control from the DataSource

rtpcontrol = (RTPControl) rtpsource.getControl(rtpControlName);

if (rtpcontrol == null)

{

System.out.println("No RTPControl interface.");

}

RTPControl is a cornucopia of information. There are methods to
retrieve the number of packets lost or received out of sequence (see code
below). Furthermore, you can query global information such as the total
number of bytes processed or the number of invalid packets detected.

// get the statistics info from the rtp control object

RTPReceptionStats stats = rtpcontrol.getReceptionStats();

String packetslost = "\tPackets lost: " + stats.getPDUlost() +

"\n";

String outoforder = "\tPackets out of order: " + stats.getPDU-

MisOrd() + "\n";

String packetsreceived = "\tPackets received: " + stats.get-

PDUProcessed() + "\n";

Peeking Under the Hood
If you want minute control over how your RTP session is created,

you can’t rely on the Manager to create the RTPSessionManager for
you. Rather, you must perform all the steps yourself. This includes
allocating a new RTPSessionManager, attaching yourself as a listener
to the RTPSessionManager and initializing the session parameters.
Then you must start the session, create a DataSource for it and con-
struct a Player for the DataSource. Unless you’re a control freak, or
absolutely must control low-level session attributes such as RTP
description lists, it’s easier to let the JMF Manager handle these details
for you.

Until Next Time
RTP and RTSP are protocols that specifically address the transporta-

tion of multimedia content over IP. RealNetworks RTSP Player gives you
access to RealMedia content and requires no modifications to your JMF
programs. RealNetworks also provides custom pause and position
change information necessary for streaming applications.

Unlike RealNetworks’ pure JMF solution, Sun’s RTP architecture is a
JMF hybrid. It’s possible to write RTP applications using only JMF. How-
ever, if you want detailed control over the RTP session, you’ll need to
manipulate the RTPSessionManager outside the realm of JMF.

Next month we’ll unveil the truth about JMF 2.0 – the most anticipat-
ed Java multimedia product ever released.

AUTHOR BIO
Linden deCarmo is a senior software engineer at NetSpeak Corporation, where he develops advanced
telephony software for IP networks. Linden is also the author of Core Java Media Framework, published
by Prentice Hall.

Java COM

88 MARCH 2000

Visualize
www.visualize.com

lindend@mindspring.com

89MARCH 2000

Java COM

Concentric
www.concentrichost.net

Java COM

90 MARCH 2000

I’d like to introduce you to a new JDJ series
consisting of selected excerpts from my
current book, Java Servlets: By Example.

I’ve put a number of chapters into article for-
mat, hoping they’ll give you some insight into
the world of servlets and the sort of things we
have to do at the server side. The first one real-
ly has nothing to do with servlets at all – it’s
more of a general overview of debugging and
optimization techniques. This is by no means
an exhaustive exploration, merely a toe-tipper.

Next month we’ll begin our discovery into
the world of servlets.

• • •
Java is a programming language. It is a pro-

gramming language that runs programs
known as class files. A class file is a sequence of
instructions that perform some logical task.
Sometimes these instructions run as expect-
ed...and sometimes they don’t.

With most IDEs (integrated development
environments) some form of debugger is avail-
able for use in developing applications or
applets. However, due to the very nature of
servlets, setting up a debugging environment
isn’t always easy.

This article presents a general debugging
class that will aid you as the developer to quick-
ly locate and fix problems. Just because Java
makes coding easy doesn’t mean that all stan-
dard coding practices go out the window. This
article looks at a number of simple steps that
can be done to speed up your class objects.

Debugging
Debugging programs is one of those annoy-

ing things that the majority of us have to per-
form at some point in our development life. As
soon as we write a piece of code, be it a class or
a method, we like to think it is perfect. “That
won’t need testing,” we say to ourselves. How-
ever, nine out of 10 times it does require test-
ing and sometimes quite intensive detective
work. Many people dislike this process of
debugging, fixing problems. It’s even worse if

you have to try and fix somebody else’s code.
Many developers view this as a necessary evil
that simply has to be done. But they loathe it.

It’s a state of mind. Think of it as a big
game…the thrill of the chase. Somewhere in
there, lurking under lines and lines of code, a
small bug is causing the whole system to come
crashing down. It becomes a game to try and
flush him (or her – no reason why a bug can’t
be female!) out into the open. When thought of
with this mind-set, that horribly small bug
you’ve been avoiding suddenly becomes so
much more attractive.

Many techniques for debugging are avail-
able to developers. Most rely on the tools pro-
vided by their development environment. In
general, they allow the inspection of variables,
stepping into code, freezing output and modi-
fication, to name but a few of the features
available. Some rely on the old-fashioned
method of debugging: print statements.

The print statement method is coming back
into vogue. It has never had it so good. Thanks
to Java, developers have the ability to print
information that used to be privileged infor-
mation of the debugger and compiler.

The most common types of bugs are the ones
that are the most obvious when found. For
example, a wrong variable name or incorrect
assignment can leave us kicking ourselves for
using it in the first place. The debugger general-
ly tells us which line the program crashed in by
highlighting it when it crashes. Very handy.

With the combination of Exception and
Throwable, Java has given the developer the
power to do this themselves. By honing in on the
line that’s causing the problem, these tools can
build up a better picture of the bug as a whole.

Java uses the System.out.println(...) method
to display messages on the console. Every
object can be printed as a string, and this
makes life so much easier.

However, the console isn’t much use to
servlets. Sure, at development time the devel-
oper can monitor the console, but more times
than not the bug is highlighted through heavy

use or after a period of time, when the console
isn’t being monitored.The servlet API defines a
class method that allows the developer to send
text to the main log file used by the Web server.
This gives the developer a certain level of con-
trol, but still doesn’t give that instant access to
information that may be critical in the catch-
ing of a bug.

The class presented here gives all the func-
tionality required to fully utilize the print
statement method. This class has:
• Easy access throughout the virtual machine
• File logging
• Socket logging
• Exception logging

The main advantage of this class, as you’ll dis-
cover, is that it’s not restricted for use in the
servlet environment. Any Java environment can
use the features of the following debugging class.

Debugging Class
One of the most important things about any

debugging class is simplicity. It can’t impact the
overall performance of the program. A class
that takes up too much processing time can’t
be used as a debugging tool. This is the devel-
oper’s equivalent of the age-old problem facing
engineers who build measurement tools: how
to build a tool that will accurately measure a
given flow, substance, mixture, temperature –
whatever – without interfering with the original
environment in which the measurement will
be taken. A system that measures the rate of
water flow will unintentionally slow the flow
down slightly by its very presence. A rod that
measures temperature will either heat or cool
the particles or atoms around about it. The
smaller the impact, the better the tool.

Debugging is no different. If we wish to find a
bug during development, this isn’t considered a
major problem. The tool is allowed to impact the
environment if necessary. However, if it’s to ship
with a production version, to catch any of those
long-term bugs it has to have minimum impact.

The class presented here serves both those
criteria.

Class Structure
Let’s assume that the class will be used

throughout the virtual machine. Let us further
assume that we don’t want to keep a specific
object instant to the class – we simply want to
use it. We can achieve this by making the
methods static, which means we don’t ever
have to instantiate the class manually.

Since we know that objects provide a
toString(...) method, which returns a string
representation of the object, we’ll only support
the ability to print strings. The calling method
can then control exactly what it wishes to
print. We can outline the class as shown below:

B O O K E X C E R P T

Debugging and
Optimization

Techniques
WRITTEN BY ALAN WILLIAMSON

91MARCH 2000

Java COM

Digital Pirahna
www.digitalpirahna.com

Java COM

92 MARCH 2000

public final class Debug extends Object {

private Debug(){}

public static void println(String _line

){

//-- do some processing

}

}

Notice the constructor. We’ve declared it pri-
vate to safeguard against anyone creating an
instance of it. This ensures that only one instance
of the class will exist in the virtual machine. Cou-
ple that with the fact that we’ve made our class
final means that no one can extend it, that is, use
it as a base class for another.

Simple Console Output
One of the most primitive things we want to

control is whether or not the output is sent to
the console. We can control this through a sim-
ple Boolean value, bSystemOut, that when set
true will display all output on the console. We
can write our core output function with this
ability, as shown in Listing 1.

Notice the provision of an extra variable,
bOn. This gives developers control of all
debugging processes through the use of one
variable. They can turn off all debugging with a
single method call.

Irrespective of the output method, the same
string will be displayed. This will be the origi-
nal string from the developer with the current
date inserted at the beginning. Having the date
included in the output is very handy when it
comes to debugging threads, for example.

Listing 2 shows the methods available to the
developer for controlling the output of the
debugging class.

File Output
Having output sent to the console is useful,

but not always practical. For example, it would
require watching the console for any messages,
as they’re lost once scrolled by. This of course
assumes you don’t redirect the console to a file,
but this is generally operating system-specific.

Sending the output to a file is a much more
convenient way for the developer to trace what
has been printed out. We can build this func-
tionality in to our debugging class very easily.

One of the things we have to ask of the file
feature is not to overwrite any existing debug
information. This is a fairly important feature,
as subsequent runs of the servlet or application
may wipe out valuable debug information.

Many of the standard file-handling classes
that come as part of the Java libraries don’t
handle writing to the end of a file. The Ran-
domFileAccess class, however, allows us to
open a file and start appending data to it.

To make the class more efficient, we’ll open the
file once and leave it open for subsequent writes.
This requires us to hold a reference to it through-
out the life cycle of the debugging class. By initial-

izing this variable with the value of null, we can
easily determine whether the file is already avail-
able. If it isn’t, we’ll open it and move the file
pointer to the end of the file so all output will be
appended. The following listing illustrates this.

if (bFile){

try{

if (OutFile == null){

OutFile = new RandomAccessFile(

filename, "rw");

OutFile.seek(OutFile.length());

OutFile.writeBytes("\r\n------Log-

ging Restarted------- n-ary limited v1.3 --

-------\r\n");

}

OutFile.writeBytes(D);

}catch(Exception E){}

}

}

Notice again how we control the use of the
file, through a variable called bFile. This partic-
ular piece of code will be placed inside the core
print routine after the call to the system out.

This class assumes it will open the same file
each time. Therefore the name of the file can be
fixed in the class, and for this case all file output will
go to a file “debug.txt”. This file will be created in the
current directory of the running application.

Socket Output
So far we have the ability to send output to

the console and to a file. Wouldn’t it be nice if
we could log on to a port from anywhere and
view the output as and when it happens?

Java has made the answer to this sort of
question very trivial. Adding such networking
capabilities to a class is no big task. We want to
give the developer the ability to connect to a
known port and then to view all the output
through a standard TELNET session.

We need two things to handle this: (1) a
thread that will listen for incoming client con-
nections, and (2) a class that will handle the
communications for each client.

Let’s define the method for setting up a listen-
ing socket. We want to handle many client con-
nections at once, so we’ll create a simple loop
that will listen for a connection and, once con-
nected, create a class to handle that connection
and then return to listen for more connections.

Since we already have a class – our debugging
one – there’s no point in creating another. So we’ll
extend this class to use the Thread class, and
define a run() method that will be used to listen
for client connections. Listing 3 shows this.

For us to send out all messages to all our
clients we need to keep a reference to each
client. This is achieved through the Vector
class, which keeps a reference to the clientDe-
bug class. This is the class we’re going to use to
handle each client, as shown in Listing 4.

The first thing this class does when it’s cre-
ated is to attempt to create an instance of
DataOutputStream, which gives us a means to

easily send strings to the socket. Since this is
purely an output class, there’s no need to get
an input stream to the socket. If this fails, an
exception will be thrown and the class refer-
ence will be set to null.

If it’s successful, then some information
regarding the current operating system and avail-
able memory is printed. This serves as both an
informative read and also to confirm to the client
that a good connection has indeed been made.

The debugging class will print to socket by
calling the println(...) method. If the client is
no longer available or has disconnected, an
exception will be thrown. This will cause the
method to return a false result, and the debug-
ging class knows to remove the client from the
list of available clients.

The method shown in the following code
details the output to the client connections. It sets
up an Enumeration to the Vector, which will allow
it to run through the list easily. If the method
returns false, then it’s removed from the list.

private static void printToClients(String

D){

Enumeration E = clients.elements();

clientDebug CD;

while (E.hasMoreElements()){

CD = (clientDebug)E.nextElement();

if (CD.println(D) == false)

clients.removeElement(CD);

}

}

The following code controls the socket con-
nections. At the core print routine, if the Vector
that holds the client’s connection is null, it’s
assumed the server hasn’t been started. The
server is then started by creating an instance of
the debugging class and calling the start()
method. This will invoke the thread and call
the run() method.

if (bSocket){

if (clients == null){

new Debug().start();

clients = new Vector();

}

if (clients.size() > 0)

printToClients(D);

}

After it’s been created, it calls the method
shown in the previous snippet.

Exception Handling
In general, the time you need a debugging

class is when things start going wrong. This
usually manifests itself in lots of exceptions
being thrown. Having the ability to handle
these exceptions properly would increase the
usefulness of a debugging class.

One of the really nice features of Java is the
ability to display a complete stack trace. This is
where each called method leading up to the

B O O K E X C E R P T

93MARCH 2000

Java COM

Riverton
www.riverton.com

Java COM

94 MARCH 2000

problem is displayed, complete with the line
number, if available. This information alone
can save many hours of debugging time.

When an exception is thrown, the stack
trace is available. This is through a method call
from the printStackTrace() method. The out-
put from this method is sent to the standard
error stream. Therefore we must redirect it in
order to get a copy of this invaluable data.

The next listing illustrates this redirection.
Instead of sending the output straight to an
output stream, we’ll store it in a string and send
it on through our normal print routine. This
way the developer will still control the flow of
output.

public static void printStackTrace(Excep-

tion E){

ByteArrayOutputStream OS = new ByteAr-

rayOutputStream();

PrintStream ps = new PrintStream(OS);

System.setErr(ps);

E.printStackTrace();

System.setErr(System.err);

println(OS.toString());

}

Sending a stream to a string is a trivial mat-
ter. This involves creating a new instance of a
ByteArrayOutputStream, which will hold all
the data. Once collected, we simply call the
toString() method and get the contents of this
buffer returned as a string.

Using the Class
Now that we have the class built, let’s look at

how we can use it. The following code will
most definitely throw an exception since the
variable Temp is null.

try{

String Temp = null;

Temp = Temp.toLowerCase();

catch(Exception E){

Debug.println(“This will throw an

exception”);

Debug.println(E);

Debug.printStackTrace(E);

}

When this occurs, a number of methods of
the Debug class are called. In the default state
this would mirror all the print statements to the
console, file and any existing client connections.

Complete Source
Listing 5, the complete code for the debug-

ging class, can be found on JDJ’s web site,
www.JavaDevelopersJournal.com.

Optimizing for Size
We can split this section into two further

subsections – common sense, and not so obvi-
ous. First of all, a commonsense suggestion for
reducing the size of a class includes naming
variables and methods with smaller names.

Java has given us the ability to use really long
method names, and while this is handy, they
have to be stored in the class file. Reducing this
can significantly decrease the size of the class file.

The Java library is a rich tapestry of classes that
perform many tasks, and with over 1,500 classes
to chose from, there’s a lot of scope. So don’t
rewrite any functionality that may already exist.

Seems an obvious one, but you’d be sur-
prised at the number of developers who have
redeveloped standard classes that were
unknown to them at the time of their rewrit-
ing. This reduces your code complexity, but in
addition, the chances are good that the class
you’re using may be a native class and there-
fore run much faster.

Reuse methods. If you’ve developed a lot of
different methods that don’t really need an
object instance to operate, place them in a
class of their own and declare them as static
methods. This will reduce the need to repeat
them in classes that need them.

Now for some hints on the not-so-obvious
tricks. One of the most common things you’ll
see in code is where strings are added together
using the “+” operator. This is convenient, but
also very slow. The compiler will generally
replace each one with an instance of String-
Buffer(...). For each “+” operator a new instance
of StringBuffer will be created. Replace the
operators with one instance and use the
append(...) method for adding strings together.

Storing dates can be a pain, especially if
you’re moving between databases. Instead of
storing the date, store the millisecond equiva-
lent in a long. Not only does this save space in
the database table and the virtual machine,
but it makes querying on the dates very effi-
cient as you’re simply comparing two num-
bers as opposed to two dates.

Finally, remember to compile with opti-
mizations turned on. This will automatically

try to reduce your code size by eliminating
dead code and converting some methods into
inline calls.

Optimizing for Speed
Optimizing for speed follows the same prin-

ciple. But always remember to do it – before
and after timings. This way you can confident-
ly convince yourself that your work has actual-
ly made an improvement and not by some
fluke increased the execution time…which
has been known to happen.

One of the most expensive operations you
can do is exception handling. Try to replace
exception blocks with logical tests, if possible,
and reduce the number of lines contained with-
in a block.

The synchronized method used for ensur-
ing thread-safe execution is also a large over-
head. Minimize the use of this where possible.

Creating objects in Java is a breeze. But they
cost. Try to reuse objects as opposed to creat-
ing new ones. For every new one you create,
the memory has to be allocated the garbage
collector can come along and clean up all
unused objects. This is common in loops.

If you’re doing a lot of dividing, think of
reworking your logic so you can divide by 2.
Dividing is a very expensive operation, and if
you can divide by 2, this can be replaced with
shift operations. Many game developers opti-
mize their code to take this into account and
ignore the remainder that may be lost.

Warning
Before you modify all your code, remember

that it’s important to get it working first. Optimiz-
ing as you develop is never a good idea as this
more often than not distorts the logic, which
makes it harder to find unwanted features, or
bugs. Many of the optimizations above will make
a difference, but use them wisely. There’s no need
to completely redo every class you wrote just to
save a couple of bytes. Use them wisely.

AUTHOR BIO
Alan Williamson is CEO of n-ary (consulting) Ltd., the first pure Java
company in the United Kingdom.The firm, which specializes solely in
Java at the server side, has offices in Scotland, England and Australia.
Alan is the author of two Java servlet books, and contributed to the
Servlet API. He has a Web site at www.n-ary.com.

alan@sys-con.com

static boolean bOn = true;
static boolean bSystemOut = true;
static SimpleDateFormat DateFormat = null;

public synchronized static void println(String Line){
if (!bOn)
return;

if (DateFormat == null)
DateFormat = new SimpleDateFormat("dd/MMM HH:mm.ss: ");

String D = DateFormat.format(new java.util.Date()) + Line +
"\r\n";

if (bSystemOut)
System.out.println(D);

}

public static void On(){
bOn=true;

}

Listing 2: Controlling the Output

Listing 1: Modification of the Core Output Routine

B O O K E X C E R P T

95MARCH 2000

Java COM

N-ary
www.n-ary.com

Java COM

96 MARCH 2000

public static void Off(){
bOn=false;

}

public static void SystemOn(){
bSystemOut=true;

}

public static void SystemOff(){
bSystemOut=false;

}

public final class Debug extends Thread {
static Vector clients = null;
static int SOCKET_PORT = 2000;

public void run(){
Socket sIN;
ServerSocket sSERVER;

try{
sSERVER = new ServerSocket(SOCKET_PORT);

}catch(Exception E){
return;

}

for(;;){
try{

sIN = sSERVER.accept();
clients.addElement(new clientDebug(sIN));

}catch(Exception E){}
}

}
}

class clientDebug {
private Socket sIn;
private DataOutputStream out;

public clientDebug(Socket _sIn){

sIn = _sIn;
try{

out = new DataOutputStream(sIn.getOutputStream());
out.writeBytes("------Logging Restarted------- n-ary

limited v1.3 ---------\r\n");

out.writeBytes("[os.name] = [" + System.getProp-
erty("os.name") + "]\r\n");

out.writeBytes("[os.arch] = [" + System.getProp-
erty("os.arch") + "]\r\n");

out.writeBytes("[os.version] = [" + System.getProp-
erty("os.version") + "]\r\n");

out.writeBytes("[java.version] = [" + System.getProp-
erty("java.version") + "]\r\n");

out.writeBytes("[java.vendor] = [" + System.getProp-
erty("java.vendor") + "]\r\n");

Runtime RT = Runtime.getRuntime();
out.writeBytes("[total memory] = [" + RT.totalMemory()

+ " bytes]\r\n");
out.writeBytes("[free memory] = [" + RT.freeMemory()

+ " bytes]\r\n");
out.writeBytes("----------------\r\n");

}catch(Exception E){
out = null;

}
}

public boolean println(String _D){

try{
out.writeBytes(_D);
return true;

}catch(Exception E){
return false;

}
}

}

Listing 4: Handling the Client Connection

Listing 3: Listening for client Connections

• String parsing: In addition to the string parsing that we’ve shown in
this article, Python has libraries for regular expression string parsing,
slice-notation syntax and other great features that make string parsing
easy. Score 10 of 10

• Productivity: Python has an extensive class library that makes doing
common tasks easy. In addition, Python has built-in language support
for collection objects including collection literals that let you define a
collection. These language constructs and class libraries make pro-
gramming strikingly productive. Score 10 of 10

• Working well with Java classes and APIs: In JPython you can instanti-
ate Java classes, invoke Java methods, subclass Java classes and inter-
faces, and easily set up bean events. In addition, JPython has support
to work with JavaBean properties and you can compile JPython into
Java classes. Thus you can create JavaBeans, servlets and applets in
JPython. Score 10 of 10

• Development environment/debugging: It’s good to have an interac-
tive interpreter, and JPython has a good one. However, if you’re used
to having GUI builders, debugging in an IDE, setting watches, and so
forth, forget about it. The development environment for JPython is
its Achilles’ heel. Unlike Python, which has some mature IDEs,
JPython has nothing. If JPython had an IDE like JBuilder or Visual
Basic, Java would have a serious competitor for the most popular
language for the JVM. Hey, Java IDE makers – Borland, Symantec,
NetBeans (or should I say Corel, BEA, Sun) – get busy. (Rumor mill:
There’s one major IDE maker already considering supporting
JPython.) Score 2 of 10

Parting Shots
Python, a high-level, dynamic, object-oriented language, is the easiest

language to learn – easier than Visual Basic. JPython, which is very close
to Python, has been certified 100% Pure Java.

JPython has a lot of momentum, and its syntax is mean and lean. It’s to
JavaBeans what Visual Basic is to ActiveX, and interest in it is growing. A
recent poll at the NetBean’s Web site showed JPython as the leading Java
scripting language. In our poll at JDJ, JPython is neck and neck with NetRexx.

Components have a symbiotic relationship with high-level languages.
For example, Visual Basic did well because of ActiveX components. And
ActiveX did well because of tools like Visual Basic. On the Java platform
we have the component models; we need the glue, that is, tools for the
high-level languages – debuggers, IDEs, and the like. JPython makes
good glue, and it transcends the role of a glue language.

For more information on JPython see Guido Van Rossum’s article at
www.developer.com/journal/techfocus/081798_jpython.html. See also
www.jpython.org/ and www.python.org/.

Many of the examples in this article were based on examples in my book,
which is scheduled for publication in April from Addison Wesley Longman.

AUTHOR BIO
Rick Hightower currently works at Buzzeo Corporation (www.buzzeo.com), the maker of ZEOLogix, an EJB
application server, rules engine and workflow. He is a principal software engineer working on an EJB
container implementation and distributed event management. In addition, he is author of a book,
Programming the Java APIs with JPython, to be published by Addison Wesley.

rick_m_hightower@hotmail.com

Python Programming in the JVM —Continued from page 66

B O O K E X C E R P T

97MARCH 2000

Java COM

Geek
Cruises

p/u
www.geekcruises.com

Develop-
mentor

p/u
www.develop.com

ADVERTISER URL PH PG

4TH PASS WWW.4THPASS.COM 877.484.7277 37

AMERICAN CYBERNETICS WWW.MULTIEDIT.COM 800.899.0110 35

APPLIED REASONING WWW.APPLIEDREASONING.COM 800.260.2772 71

CAREER CENTRAL WWW.CAREERCENTRAL.COM/JAVA 888.946.3822 86

CAREER OPPORTUNITY ADVERTISERS 800.846.7591 102-113

CONCENTRIC NETWORK WWW.CONCENTRICHOST.NET 800.476.0196 89

DEVELOPMENTOR WWW.DEVELOP.COM 800.699.1932 97

ELIXIR TECHNOLOGY WWW.ELIXIRTECH.COM/DOWNLOAD/ 65 532.4300 41

EMBARCADERO WWW.EMBARCADERO.COM/ADMINISTER 85

EMBARCADERO WWW.EMBARCADERO.COM/DESIGN 87

EMBARCADERO WWW.EMBARCADERO.COM/DEVELOP 83

EVERGREEN INTERNET, INC. WWW.EVERGREEN.COM 43

FIORANO SOFTWARE, INC. WWW.FIORANO.COM 408.354.3210 45

FLASHLINE WWW.FLASHLINE.COM 216.861.4000 39

GEEK CRUISES WWW.GEEKCRUISES.COM 650.327.3692 97

GENERIC LOGIC, INC. WWW.GENLOGIC.COM 413.253.7491 10

HOTDISPATCH.COM WWW.HOTDISPATCH.COM 4

IAM CONSULTING WWW.IAMX.COM 212.580.2700 61

IBM WWW.IBM.COM/DEVELOPERWORKS 67

IIDEA INTEGRATION WWW.IDEA.COM 703.821.8809 29

INETSOFT TECHNOLOGY CORP WWW.INETSOFTCORP.COM 732.235.0137 73

JAVACON2000 WWW.JAVACON2000.COM 78-79

JDJ STORE WWW.JDJSTORE.COM 888.303.JAVA 100-101

KL GROUP INC. WWW.KLGROUP.COM/REAL 888.328.9596 77

METAMATA, INC. WWW.METAMATA.COM 510.796.0915 55

MICROSOFT MSDN.MICROSOFT.COM/SUBSCRIPTIONS 11

MICROSOFT MSDN.MICROSOFT.COM/WINDOWSDND 13

N-ARY WWW.N-ARY.COM 95

NEW ATLANTA WWW.NEWATLANTA.COM 678.366.3211 53

NUMEGA WWW.COMPUWARE.COM/NUMEGA 800.4-NUMEGA 31

OBJECT DESIGN WWW.OBJECTDESIGN.COM/JAVLIN 800.962.9620 58-59

OBJECTSWITCH CORPORATION WWW.OBJECTSWITCH.COM/IDC35/ 415.925.3460 51

OPTIMIZE IT WWW.OPTIMIZEIT.COM 33

PERSISTENCE WWW.PERSISTENCE.COM 17

POINTBASE WWW.POINTBASE.COM/JDJ 877.238.8798 25

PRAMATI WWW.PRAMATI.COM/J2EE.HTM 914.876.3007 69

PROTOVIEW WWW.PROTOVIEW.COM 800.231.8588 3

QUICKSTREAM SOFTWARE WWW.QUICKSTREAM.COM 888.769.9898 49

RIVERTON SOFTWARE CORPORATION WWW.RIVERTON.COM 781.229.0070 93

SEGUE SOFTWARE WWW.SEGUE.COM/ADS/CORBA 800.287.1329 20-21

SIC CORPORATION WWW.ACCESS21.CO.KR 822.227.398801 75

SLANGSOFT WWW.SLANGSOFT.COM/CODE/SPIRUS.HTML 19

SOFTWARE AG WWW.SOFTWAREAG.COM/BOLERO 925.472.4900 47

SYBASE INC. WWW.SYBASE.COM 800.8.SYBASE 15

SYS-CON WWW.SYS-CON.COM 800.513.7111 34

TIDESTONE TECHNOLOGIES WWW.TIDESTONE.COM 800.884.8665 27

TOGETHERSOFT LLC WWW.TOGETHERSOFT.COM 919.772.9350 6

VISICOMP, INC. WWW.VISICOMP.COM 831.335.1820 57

VSI WWW.BREEZEXML.COM 800.556.VSI 65

VISUALIZE INC. WWW.VISUALIZEINC.COM 602.861.0999 88

YOUCENTRIC WWW.YOUCENTRIC.COM/NOBRAINER 888.462.6703 63

ADVERTISINGINDEX

Java COM

98 MARCH 2000

Gemstone Expands
Product Family
(Beaverton, OR) – GemStone Sys-
tems, Inc., announces an
expanded portfo-
lio of its Java-
based GemStone/J application
server products.

The new GemStone/J Web Edi-
tion, Component Edition, Enter-
prise Edition and Commerce
Automation Edition are fully
code-compatible, a first in the

application server
industry. They use
varying levels of
the same J2EE
environment
including JSPs,
servlets and EJBs,
along with Gem-

Stone’s unique Java
virtual machine pooling and
shared memory environment to
support peak performance of
iCommerce applications.
www.gemstone.com

Red Hat Brings Java Tech-
nology to Linux Community
(Research Triangle Park, NC) –
Red Hat Inc. and IBM announce
a worldwide licensing and distri-
bution agreement for IBM’s Java
software for Linux.

Under the agreement Red Hat
will license and distribute IBM’s
Java Runtime engine, Java Virtual
Machine and the IBM Developer
Kit for Linux, Java Technology
Edition. IBM’s Java Technology
will be distributed with the Red
Hat Linux Operating Systems
Enterprise
Edition. Red
Hat will provide worldwide sup-
port contact for users of the IBM
Java Technology as they create
and deploy Java-based Internet
solutions on Red Hat Linux.
www.redhat.com

TurboLinux Licenses IBM’s
Java Technology for Linux
(San Francisco, CA) – TurboLinux
announces that it has licensed
IBM’s Developer Kit for Linux,
Java Technology Edition, that
includes a Java Virtual Machine
giving customers the ability to
enhance database performance,
simplify application installation
and minimize the resources
needed to maintain their data-

bases. TurboLinux will
include IBM’s Devel-
oper Kit for Linux in
the next release of its
products. www.tur-

bolinux.com

Inprise Launches Visibroker
for Java 4.0
(Paris, France) –
Inprise/Borland launches Visi-
Broker for Java 4.0, the Linux ver-
sion of its CORBA ORB. Based on
open industry standards, VisiBro-
ker 4.0 delivers the ideal founda-
tion for customers to expand
their presence on the Web and
provides them with the technolo-
gy infrastruc-
ture needed
to support enterprise-scale e-
business applications. A free 60-
day evaluation version can be
downloaded from the
Inprise/Borland Web site.
www.borland.com/visibroker

HiT Software Ships
First DB2 Access for
Java 2 Platforms
(San Jose, CA) – HiT Software,
Inc., releases HiT JDBC/DB2 v2.0,
a high performance Java JDBC
level 2 connectivity middleware
for DB2 server access. JDBC level
2 compliance offers Java develop-
ers powerful new data access
techniques including scrollable
result sets, batch updates, pro-
grammatic updates, character
stream support for international
Unicode and time zone support.

HiT JDBC/DB2 now supports
SSL v3.0 for authentication and
data encryption of data across
networks. www.hit.com

MediaFORM Introduces
SmartDRIVE2
(Exton, PA) – MediaFORM
introduces SmartDRIVE2, the
first 12X compatible CD-R drive
made for professional duplica-

tion systems.
Key features
include Copy
Protection; Watermarking; Smart-
STAMP; SmartMEDIA; SmartRID;
Frame Accurate Recording; and
Mini-Disc and Business Card CD-
R Compatibility.
www.mediaform.com

The Open Group Announces
TETware 3.4
(Menlo Park, CA) – The Open
Group introduces TETware 3.4,
the latest release of the Test Envi-
ronment Toolkit, a multiplatform
test framework.

TETware 3.4 provides a Java
testing environment that permits
the development of Java applica-
tions with test classes. Once
implemented, these classes can
be automatically exercised by the
test case manager, communicat-
ing with TETware’s test case con-
troller using the standard mecha-
nisms. www.opengroup.org

InstallShield Ships Profes-
sional 2000 Second Edition
(Schaumburg, IL) – InstallShield
Software Corporation releases

InstallShield Profes-
sional 2000 Second

Edition, the latest
version of its indus-

try-leading installa-
tion-authoring solution

for ISVs and corporate
developers.
www.installshield.com

Persistence to Port
PowerTier for EJB to Linux
(San Mateo, CA) – Persistence
Software is porting PowerTier for
Enterprise
JavaBeans to
the Linux oper-
ating system, offering a powerful
solution for e-commerce sites.

PowerTier for EJB provides
stateful failover, partitioning and
workload balancing through
PowerTier’s ability to synchronize
multiple object caches distrib-
uted across multiple servers –
features that will greatly extend
the capabilities of a Linux-based
environment. Red Hat Linux 6.1
– the latest release of the Red Hat
Linux operating system – incor-
porates easy installation, soft-
ware update information,and
access and improved system
management capabilities.
www.redhat.com
www.persistence.com

Keenovation
Introduces eSign-on
(Alexandria, VA) –
Keenovation, Inc.,
introduces the Internet’s first
Java-based Web companion
aimed at automating logins and
registration, and filling out forms
for online purchases.

With a single mouse click
eSign-on users can securely and
quickly log in to multiple Web-
based e-mail accounts, check the
status of their online orders at
various
online
shopping sites or simply access
their online electronic and full-
service brokerage accounts. A
free copy can be downloaded
from the company’s Web site.
www.keenovation.com

(Cleveland, OH) – Flashline.com
announces the formation of the
Flashline Quality Assurance Lab,
an independent service to test
third-party Java-
Beans compo-
nents, Enterprise
JavaBeans and Java code for
structure, performance, server-
side capacity and other quality
issues. Flashline has formed
agreements with industry-lead-
ing companies to use their best-

of-breed testing tools to provide
objective and precise code
analysis. This service offers IT
professionals quick and thor-

ough measurement
procedures, and
enables higher

quality, more robust and effi-
cient components by testing
Java code throughout the devel-
opment cycle from the initial
design process through deploy-
ment. www.flashline.com

Flashline.com Announces
QA Testing Service

99MARCH 2000

Java COM

SilverStream
www.silverstream.com

Java COM

100 MARCH 2000

KL Group
www.klgroup.com

